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1 Introduction

Cyclone is a language for C programmers who want to write secure, ro-
bust programs. It’s a dialect of C designed to be safe: free of crashes, buffer
overflows, format string attacks, and so on. Careful C programmers can
produce safe C programs, but, in practice, many C programs are unsafe.
Our goal is to make all Cyclone programs safe, regardless of how care-
fully they were written. All Cyclone programs must pass a combination
of compile-time, link-time, and run-time checks designed to ensure safety.

There are other safe programming languages, including Java, ML, and
Scheme. Cyclone is novel because its syntax, types, and semantics are
based closely on C. This makes it easier to interface Cyclone with legacy
C code, or port C programs to Cyclone. And writing a new program in
Cyclone “feels” like programming in C: Cyclone tries to give program-
mers the same control over data representations, memory management,
and performance that C has.

Cyclone’s combination of performance, control, and safety make it a
good language for writing systems and security software. Writing such
software in Cyclone will, in turn, motivate new research into safe, low-
level languages. For instance, originally, all heap-allocated data in Cyclone
were reclaimed via a conservative garbage collector. Though the garbage
collector ensures safety by preventing programs from accessing deallo-
cated objects, it also kept Cyclone from being used in latency-critical or
space-sensitive applications such as network protocols or device drivers.
To address this shortcoming, we have added a region-based memory man-
agement system based on the work of Tofte and Talpin. The region-based
memory manager allows you some real-time control over memory man-
agement and can significantly reduce space overheads when compared to
a conventional garbage collector. Furthermore, the region type system en-
sures the same safety properties as a collector: objects cannot be accessed
outside of their lifetimes.

This manual is meant to provide an informal introduction to Cyclone.
We have tried to write the manual from the perspective of a C programmer
who wishes either to port code from C to Cyclone, or develop a new sys-
tem using Cyclone. Therefore, we assume a fairly complete understanding
of C.

Obviously, Cyclone is a work in progress and we expect to make sub-
stantial changes to the design and implementation. Your feedback (and
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patience) is greatly appreciated.

1.1 Acknowledgements

The people involved in the development of Cyclone are now at Harvard,
AT&T, Maryland, and Washington; much work began at Cornell. Dan
Grossman, Trevor Jim, and Greg Morrisett worked out the initial design
and implementation, basing the language to some degree on Popcorn, a
safe-C-like language that was developed at Cornell as part of the Typed
Assembly Language (TAL) project. Mike Hicks ported a number of li-
braries and programs to Cyclone, helped with the configuration and in-
stallation procedures, and has been the lead on adding unique and reference-
counted pointers to Cyclone, among other things. Mathieu Baudet con-
tributed the bulk of the code for the link-checker. Matthew Harris did
much of the hard work needed to wrap and import the necessary libraries.
Yanling Wang ported bison and flex to Cyclone. James Cheney has added
support for representation types, singleton ints, marshalling support, etc.
Nikhil Swamy added support for reaps. All of these people have also con-
tributed by finding and fixing various bugs. A number of other people
have also helped to find bugs and/or contributed key design ideas in-
cluding Mujtaba Ali, Fred Smith, Nathan Lutchansky, Rajit Manohar, Bart
Samwell, Emmanuel Schanzer, Frances Spalding, Jeff Vinocur, and David
Walker.

2 Cyclone for C Programmers

We begin with a quick overview of Cyclone, suitable for those who already
know how to program in C. We’ll explain some of the ways that Cyclone
differs from C and some of the reasons why; you should come away with
enough knowledge to start writing, compiling, and running your own Cy-
clone programs. We assume that the Cyclone compiler is already installed
on your system (see Appendix E if you need to install the compiler).

2.1 Getting Started

Here’s a Cyclone program that prints the string “hello, world.”
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#include <stdio.h>

int main() {
printf("hello, world\n");
return 0;

}

It looks rather like a C program—in fact, a C compiler will happily
compile it. The program uses #include to tell the preprocessor to import
some standard definitions, it defines a distinguished function main that
serves as the entry point of the program, and it uses the familiar printf
function to handle the printing; all of this is just as in C.

To compile the program, put it into a file hello.cyc, and run the
command

cyclone -o hello hello.cyc

This tells the Cyclone compiler (cyclone) to compile the file hello.cyc;
the -o flag tells the compiler to leave the executable output in the file
hello (or, in Windows, hello.exe). If all goes well you can execute
the program by typing

hello

and it will print

hello, world

It’s interesting to compare our program with a version that omits the
return statement:

#include <stdio.h>

int main() {
printf("hello, world\n");

}

A C compiler will compile and run this version without warning. In
contrast, Cyclone will warn that you have failed to return an int. Cyclone
only warns you when you fail to return an integral type (char, short,
int, etc.) but it gives an error if you fail to return other types (e.g., pointer
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types). This requirement of definite return ensures type safety while impos-
ing minimal constraints on a programmer porting C code to Cyclone.

Definite return reflects Cyclone’s concern with safety. The caller of
the function expects to receive a value of the return type; if the function
does not execute a return statement, the caller will receive some incor-
rect value instead. If the returned value is supposed to be a pointer, the
caller might try to dereference it, and dereferencing an arbitrary address
can cause the program to crash. So, Cyclone requires a return statement
with a value of the return type whenever type safety can be compromised.

2.2 Pointers

Programs that use pointers properly in C can be both fast and elegant.
But when pointers are used improperly in C, they cause core dumps and
buffer overflows. To prevent this, Cyclone introduces different kinds of
pointers and either (a) puts some restrictions on how you can use pointers
of a given kind or (b) places no restrictions but may insert additional run-
time checks. Here we present a basic overview of Cyclone pointers; they
are summarized and covered in more detail in Section 3.

Nullable Pointers

The first kind of pointer is indicated with a *, as in C. For example, if we
declare

int x = 3;
int *y = &x;

then y is a pointer to the integer 3 (the contents of x). The pointer, y,
is represented by a memory address, namely, the address of x. To refer to
the contents of y, you use *y, so, for example, you can increment the value
of x with an assignment like

*y = *y + 1;

This much is just as in C. However, there are some differences in Cy-
clone:
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• You can’t cast an integer to a pointer. Cyclone prevents this be-
cause it would let you overwrite arbitrary memory locations. In Cy-
clone, NULL is a keyword suitable for situations where you would
use a (casted) 0 in C. The compiler accepts 0 as a legal possibly-null
pointer value, but using NULL is preferred.

• You can’t do pointer arithmetic on a * pointer. Pointer arithmetic in
C can take a pointer out of bounds, so that when the pointer is even-
tually dereferenced, it corrupts memory or causes a crash. (However,
pointer arithmetic is possible using @fat and @zeroterm pointers.)

• There is one other way to crash a C program using pointers: you
can dereference the NULL pointer or try to update the NULL location.
Cyclone prevents this by inserting a null check whenever you deref-
erence a * pointer (that is, whenever you use the *, ->, or subscript
operation on a pointer.)

These are drastic differences from C, particularly the restriction on pointer
arithmetic. The benefit is that you can’t cause a crash using * pointers in
Cyclone.

Fat Pointers

If you need to do pointer arithmetic in Cyclone, you can use a second kind
of pointer, called a fat pointer and indicated by writing the qualifier @fat
after the *. For example, here is a program that echoes its command-line
arguments:

#include <stdio.h>

int main(int argc, char *@fat *@fat argv) {
argc--; argv++; /* skip command name */
if (argc > 0) {

/* print first arg without a preceding space */
printf("%s",*argv);
argc--; argv++;

}
while (argc > 0) {

/* print other args with a preceding space */
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printf(" %s",*argv);
argc--; argv++;

}
printf("\n");
return 0;

}

Except for the declaration of argv, which holds the command-line ar-
guments, the program looks just like you would write it in C: pointer arith-
metic (argv++) is used to move argv to point to each argument in turn,
so it can be printed.

In C, argv would typically be declared with type char **, a pointer
to a pointer to a character, which is thought of as an array of an array of
characters. In Cyclone, argv is instead declared with type char *@fat*@fat,
which is thought of in the same way: it is a (fat) pointer to a (fat) pointer
to characters. The difference between an unqualified pointer and a @fat
pointer is that a @fat pointer comes with bounds information and is thus
“fatter” than a traditional pointer. Each time a fat pointer is dereferenced
or its contents are assigned to, Cyclone inserts both a null check and a
bounds check. This guarantees that a @fat pointer can never cause a
buffer overflow.

Because of the bounds information contained in @fat pointers, argc
is superfluous: you can get the size of argv by writing numelts(argv).
We’ve kept argc as an argument of main for backwards compatibility.

It’s worth remarking that you can always cast a * pointer to a @fat
pointer (and vice-versa). So, it is possible to do pointer arithmetic on a
value of type *, but only when you insert the appropriate casts to convert
from one pointer type to another. Note that some of these casts can fail
at run-time. For instance, if you try to cast a fat pointer that points to an
empty sequence of characters to char *, then the cast will fail since the
sequence doesn’t contain at least one character.

Finally, @fat pointers are used so frequently in Cyclone, that there is
special character, ? (question mark) that you can use as an abbreviation
for *@fat. For instance, we could write the prototype for main as:

int main(int argc, char ?? argv);

instead of the more verbose:

int main(int argc, char *@fat *@fat argv);
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Non-NULL Pointers

Another kind of pointer in Cyclone is the non-NULL pointer. A non-
NULL pointer is indicated by the qualifier @notnull. A @notnull pointer
is like an unqualified pointer, except that it is guaranteed not to be NULL.
This means that when you dereference a @notnull pointer or assign to
its contents, a null check is sometimes unnecessary.

@notnull pointers are useful in Cyclone both for efficiency and as
documentation. This can be seen at work in the standard library, where
many functions take @notnull pointers as arguments, or return @notnull
pointers as results. For example, the getc function that reads a character
from a file is declared,

int getc(FILE *@notnull);

This says that getc expects to be called with a non-NULL pointer to a
FILE. Cyclone guarantees that, in fact, when the getc function is en-
tered, its argument is not NULL. This means that getc does not have to
test whether it is NULL, or decide what to do if it is in fact NULL.

In C, the argument of getc is declared to have type FILE *, and pro-
grammers can call getc with NULL. So for safety, C’s getc ought to
check for NULL. In practice, many C implementations omit the check;
getc(NULL) is an easy way to crash a C program.

In Cyclone, you can still call getc with a possibly-NULL FILE pointer
(a FILE *). However, Cyclone insists that you insert a check before the
actual call:

FILE *f = fopen("/etc/passwd","r");
int c = getc((FILE *@notnull)f);

Here f will be NULL if the file /etc/passwd doesn’t exist or can’t be read.
So, in Cyclone fmust be cast to FILE *@notnull before the call to getc.
The cast causes a null check. If you try to call getc without the cast,
Cyclone will insert one for you automatically, and warn you that it is doing
so.

These warnings do not mean that your program is unsafe—after all,
Cyclone has inserted the check for you. However, you should pay atten-
tion to the warnings because they indicate a place where your program
could suddenly halt (if the check fails), and because the inserted checks
can slow down your program. It’s worth rewriting your code to handle
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the error case better, or even eliminate the null check. For instance, if we
rewrite the code above so that we explicitly test whether or not fopen
succeeds in returning a non-NULL file descriptor:

FILE *f = fopen("/etc/passwd","r");
if (f == NULL) {

fprintf(stderr,"cannot open passwd file!");
exit(-1);

}
int c = getc(f);

then Cyclone no longer issues a warning at the call to getc and the result-
ing code does not have to do a null check.

If you call getc with a FILE *@notnull, of course, no check is re-
quired. For example, stdin is a FILE *@notnull in Cyclone, so you
can simply call getc(stdin). In Cyclone you will find that many func-
tions return *@notnull pointers, so many of the pointers you deal with
will already be *@notnull pointers, and neither the caller nor the called
function needs to do null checks—and this is perfectly safe.

Like @fat pointers, @notnull pointers are so useful, Cyclone pro-
vides an abbreviation. Instead of writing FILE *@notnull, you can sim-
ply write FILE @ when you want to write the type of a non-NULL pointer
to a FILE.

Zero-Terminated Pointers

Fat pointers support arbitrary pointer arithmetic and subscripting, but
they don’t have the same representation as pointers in C. This is because
we need extra information to determine the bounds and ensure that a sub-
script or dereference is in bounds. Unfortunately, this change in repre-
sentations can make it difficult to interface with legacy C code where the
representations might not be easily changed.

Fortunately, Cyclone supports one more pointer type where the rep-
resentation matches C’s and yet supports a limited form of pointer arith-
metic and subscripting: the zero-terminated pointer. A zero-terminated
pointer is a pointer to a sequence of elements that are guaranteed to be
terminated with a zero. C’s strings are a good example. In Cyclone, the
type of C’s strings can be written as char *@zeroterm. The @zeroterm
qualifier indicates that the pointer points to a zero-terminated sequence.
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The qualifier is orthogonal to other qualifiers, such as @fat or @notnull,
so you can freely combine them.

Because C strings arise so frequently, the types char *, char *@notnull,
and char *@fat are by default qualified with @zeroterm. You can over-
ride the @zeroterm qualifier on char pointers by putting in an explicit
@nozeroterm qualifier (e.g., char *@nozeroterm). Pointers to other
types (e.g., int *) have a default qualifier of @nozeroterm.

If x is a * @zeroterm pointer, you can use pointer arithmetic on it, as
in x+i. However, the compiler inserts checks to ensure that (a) i is non-
negative and (b) there is no zero between x[0] and x[i-1] inclusive.
This ensures that you can’t read past the terminating zero. In addition,
when writing to a zero-terminated pointer, the compiler inserts checks to
ensure that you don’t replace the final zero with some other value. This is
crucial for ensuring that a buffer overrun cannot occur. As in C, x[i] is
equivalent to x+i, so subscripts come with the same checks.

Because of these checks, subscripts and pointer arithmetic on * @zeroterm
can be fairly expensive. In particular, if you are not careful, you can turn
what appears to be an O(n) algorithm into an O(n-squared) one. You can
avoid this overhead by casting the pointer to a @fat zero-terminated pointer.
This computes the length of the sequence once and then uses the bounds
information associated with the fat pointer to do any bounds checks.

Cyclone’s constraints on zero-terminated pointers mean that you have
to be careful when porting code from C. For instance, consider the follow-
ing function:

void foo(char *s, int offset) {
unsigned int len = strlen(s);
for (unsigned int i = 0; offset+i < len; i++)

s[offset+i] = ’a’;
}

This code can be quite expensive when offset is large because the com-
piler must check that there is no intervening zero between s[0] and s[offset+i]
for each iteration of the loop. You can get rid of this overhead by rewriting
the code as follows:

void foo(char *s, int offset) {
unsigned int len = strlen(s);
s = s + offset;
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for (unsigned int i = 0; offset+i < len; i++, s++)

*s = ’a’;
}

Now the compiler is only checking that *s is not zero when it does the
increment s++. In addition, however, the compiler is checking each time
you do *s = ’a’ that *s is not zero, because then you could overwrite
the zero with an ’a’ and potentially step outside the bounds of the buffer.

One way to get rid of all of these checks is to cast s to a non-zero-
terminated fat pointer before entering the loop. When you cast a zero-
terminated pointer to a non-zero-terminated fat pointer, the compiler cal-
culates the length of the sequence once, decrements it by one, and then
builds an appropriate fat pointer with this bounds information. When you
write using the fat pointer, bounds checks (not zero checks) keep you from
writing any value over the zero. Furthermore, if you write the code in a
straightforward fashion using subscripting, the compiler is more likely to
eliminate the bounds checks. Here is an example:

void foo(char *s, int offset) {
char *@fat @nozeroterm fat_s = (char *@fat @nozeroterm)s;
unsigned int len;
fat_s += offset;
len = numelts(fat_s);
for (unsigned int i = 0; i < len; i++)

fat_s[i] = ’a’;
}

The Cyclone compiler generates code that works like the following C code:

struct _tagged_arr {
char *base;
char *curr;
char *last;

};

void Cyc_foo(char *s,int offset){
struct _tagged_arr fat_s = {s, s, s+strlen(s)};
unsigned int len;
fat_s.curr += offset;
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if (fat_s.curr < fat_s.base || fat_s.curr >= fat_s.last)
len = 0;

else
len = fat_s.last - fat_s.curr;

{ unsigned int i = 0;
for(0; i < len; i++)

fat_s.curr[i] = ’a’;
}

}

Notice that here, the compiler is able to eliminate all bounds checks within
the loop and still ensure safety.

Bounded Pointers

A pointer type can also specify that it points to a sequence of a particular
(statically known) length using the @numelts qualifier. For instance, we
can write:

void foo(int *@numelts(4) arr);

Here, the parameter arr is a pointer to a sequence of four integer val-
ues. Both the non-null and nullable pointers (but not fat pointers) support
explicit sequence bounds that are tracked statically. Indeed, both pointer
kinds always have length information and when you write “int *” this
is just short-hand for “int *@numelts(1)”.

Bounded pointers are most often constructed from arrays. In particu-
lar, whenever you pass an array as a parameter to a function, it is promoted
automatically to a pointer, following the rules of C. This pointer will have
a sequence bound that is the same as the length of the array. Here is an
example of calling foo above:

int x[4] = {1,2,3,4};
int y[8] = {1,2,3,4,5,6,7,8};
foo(x);
foo(y);

In the first call, the parameter x being passed to foo is automatically cast
to type int *@numelts(4), which is the type expected by foo. In the
second case, the type of y is automatically cast to type int *@numelts(8).
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Since 8 ≥ 4, the call is safe and so Cyclone accepts it but emits a warning
“implicit cast to shorter array.” Finally, the following code will be rejected,
because the pointer being passed is too short:

int bad[2] = {1,2};
foo(bad); // does not typecheck

Finally, bounded pointers can also be used to correlate a pointer to an
array whose length is not known statically with a variable that defines it.
For example, C programmers often write code like the following:

int sum(int num, int *p) {
int a = 0;
for (unsigned i = 0; i < num; i++)

a += p[i];
}

Here, num is the length of the array pointed at by p. In Cyclone, this rela-
tionship can be expressed by giving sum the following type (the body of
the function is the same):

int sum(tag_t<‘n> num,
int *@notnull @numelts(valueof(‘n)) p) {

The type of num is specified as tag_t<‘n>. This simply means that num
holds an integer value, called ‘n, and the number of elements of p is equal
to n. This form of dependency is common enough that it can be abbrevi-
ated as follows:

int sum(tag_t num, int p[num]);

and the compiler will fill in the missing information.
A bounded pointer paired with a tag_t is quite similar to a fat pointer.

Indeed, you can convert between the two using the library functions mkfat
and mkthin. See Appendix C for a further description.

Initializing Pointers

Pointers must be initialized before they are used to ensure that unknown
bits do not get used as a pointer. This requirement goes for variables that
have pointer type, as well for arrays, elements of arrays, and for fields in
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structures. Conversely, data that does not have pointer type need not be
initialized before it is used, since doing so cannot result in a violation of
safety. This decision adheres to the philosophy of C, but diverges from
that of traditional type-safe languages like Java and ML. The rules for ini-
tialization of pointers used by Cyclone are described in Section 12.

2.3 Regions

Another potential way to crash a program or violate security is to deref-
erence a dangling pointer, which is a pointer to storage that has been deal-
located. These are particularly insidious bugs because the error might not
manifest itself immediately. For example, consider the following C code:

struct Point {int x; int y;};

struct Point *newPoint(int x,int y) {
struct Point result = {x,y};
return &result;

}

void foo(struct Point *p) {
p->y = 1234;
return;

}

void bar() {
struct Point *p = newPoint(1,2);
foo(p);

}

The code has an obvious bug: the function newPoint returns a pointer to
a locally-defined variable (result), even though the storage for that vari-
able is deallocated upon exit from the function. That storage may be re-
used (e.g., by a subsequent procedure call) leading to subtle bugs or secu-
rity problems. For instance, in the code above, after bar calls newPoint,
the storage for the point is reused to store information for the activation
record of the call to foo. This includes a copy of the pointer p and the
return address of foo. Therefore, it may be that p->y actually points to
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the return address of foo. The assignment of the integer 1234 to that loca-
tion could then result in foo “returning” to an arbitrary hunk of code in
memory. Nevertheless, the C type-checker readily admits the code.

In Cyclone, this code would be rejected by the type-checker to avoid
the kind of problems mentioned above. The reason the code is rejected is
that the Cyclone compiler tracks object lifetimes and ensures that a pointer
to an object can only be dereferenced if that object has not been deallo-
cated.

Cyclone achieves this by assigning each object a symbolic region that
corresponds to the area of memory in which the object is allocated. Cy-
clone also tracks, for every pointer, what region it points into. The region
pointed to can be written as part of the pointer type, but usually the re-
gion can be omitted—the compiler is smart enough to discover the region
automatically in many cases.

For example, the variable result in our code above lives within a
region that corresponds to the invocation of the function newPoint. We
write the name of the region explicitly using a back-quote, as in ‘newPoint.
Because result lives in region ‘newPoint, the expression &result is a
pointer into region ‘newPoint. The full Cyclone type of &result, with
the explicit region, is struct Point * @region(‘newPoint).

A region that corresponds to a lexical block, like an activation record,
is referred to as a stack region, since it corresponds to a piece of the runtime
stack. When control flow exits a block, the storage (i.e., the stack region)
for that block is deallocated. Cyclone keeps track of the set of regions that
are allocated and deallocated at every control-flow point and ensures that
you only dereference pointers to allocated regions. For example, consider
the following fragment of (bad) Cyclone code:

1 int f() {
2 int x = 0;
3 int *@region(‘f) y = &x;
4 L:{ int a = 0;
5 y = &a;
6 }
7 return *y;
8 }

In the function f above, the variables x and y live within the region ‘f
because they are declared in the outermost block of the function, and be-
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cause the default region name for the block of a function is ‘<function
name>. The storage for those variables will live as long as the invocation
of the function. Note that since y is a pointer to x, the type of y is int
*@region(‘f), indicating that y points into region ‘f.

The variable a does not live in region ‘f, because it is declared in an
inner block, which we have labeled with L. The storage for the inner block
L may be deallocated upon exit of the block, before the function itself re-
turns. To be more precise, the storage for a is deallocated at line 7 in the
code. Thus, it is an error to try to access this storage in the rest of the
computation, as is done on line 7.

Cyclone detects the error because it gives the expression &a the type
int *@region(‘L), meaning that the value is a pointer into region ‘L.
So, the assignment y = &a fails to type-check because y expects to hold
a pointer into region ‘f, not region ‘L. The restriction, compared to C, is
that a pointer’s type indicates one region instead of all regions.

Region Inference

If you had to write a @region qualifier on every pointer type, then writing
code would be unpleasant. Fortunately, Cyclone provides a number of
mechanisms to cut down on the region annotations you have to write.

First off, you can omit the @region qualifier keyword and simply
write the region name (e.g., ‘r) as long as you put the region name after
any other qualifiers. For instance, instead of writing “int *@notnull
@region(‘r)” we can simply write “int @‘r”. For clarity, we will of-
ten use an explicit @region qualifier, but you’ll find that the libraries and
other example programs frequently use the abbreviations.

In addition, Cyclone often figures out the region of a pointer without
the programmer providing the information. This is called region inference.
For instance, we can rewrite the function f above without any region an-
notations, and without labeling the blocks:

1 int f() {
2 int x = 0;
3 int *y = &x;
4 { int a = 0;
5 y = &a;
6 }
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7 return *y;
8 }

Cyclone can still figure out that y is a pointer into region ‘f, and &a is a
pointer into a different (now anonymous) region, so the code should be
rejected.

As we will show below, occasionally you will need to put explicit re-
gion annotations into the code to convince the type-checker that some-
thing points into a particular region, or that two things point into the same
region. In addition, it is sometimes useful to put in the region annotations
for documentation purposes, or to make type errors less cryptic. See Sec-
tion 6 for more information about region inference.

You need to understand a few more details about regions to be an ef-
fective Cyclone programmer: the heap region, LIFO regions, region poly-
morphism, and default region annotations for function parameters. The
following sections give a brief overview of these topics. Information about
additional region-based constructs, including the unique and reference-
counted regions, and dynamic regions, can be found in Section 8.

The Heap Region

There is a special region for the heap, written ‘H, that holds all of the
storage for top-level variables, and for data allocated via new or malloc.
For instance, if we write the following declarations at the top-level:

struct Point p = {0,1};
struct Point *ptr = &p;

then Cyclone figures out that ptr points into the heap region. To reflect
this explicitly, we can put the region in the type of ptr if we like:

struct Point p = {0,1};
struct Point *@region(‘H) ptr = &p;

As another example, the following function heap-allocates a Point
and returns it to the caller. We put the regions in here to be explicit:

struct Point *@region(‘H) good_newPoint(int x,int y) {
struct Point *@region(‘H) p =

malloc(sizeof(struct Point));
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p->x = x;
p->y = y;
return p;

}

Alternatively, we can use new to heap-allocate and initialize the result:

struct Point *@region(‘H) good_newPoint(int x,int y) {
return new Point{x,y};

}

LIFO Regions

Storage on the stack is implicitly allocated and recycled when you enter
and leave a block. Storage in the heap is explicitly allocated via new or
malloc, but there is no support in Cyclone for explicitly freeing an object
in the heap. The reason is that Cyclone cannot in general track the life-
times of individual objects within the heap accurately, so it can’t be sure
whether dereferencing a pointer into the heap would cause problems. In-
stead, unless otherwise specified, a conservative garbage collector is used
to reclaim the data allocated in the heap. We also support unique pointers
and reference-counted pointers that programmers can safely free manually,
but we defer discussion of these features until Section 8.

Using a garbage collector to recycle memory is the right thing to do for
most applications. For instance, the Cyclone compiler uses heap-allocated
data and relies upon the collector to recycle most objects it creates when
compiling a program. But a garbage collector can introduce pauses in
the program, and as a general purpose memory manager, might not be
as space- or time-efficient as routines tailored to an application.

To address these applications, Cyclone provides support for LIFO re-
gions. A LIFO region is similar to a stack region in that its lifetime is
lexically-scoped (last-in-first-out, or LIFO) but permits dynamic alloca-
tion. Consider the following syntax:

{ region<‘r> h;
...

}

This declares a new region ‘r along with a region handle h. The handle
can be used for dynamically-allocating objects within the region ‘r. Like
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a stack region, all of the storage for the region is deallocated at the point
of the closing brace. Unlike stack regions, the number (and size) of objects
that you allocate into a LIFO region is not fixed at compile time. In this
respect, LIFO regions are more like the heap. You can use the rnew(h)
and rmalloc(h,...) operations to allocate objects within a growable
region, where h is the handle for the region.

For instance, the following code takes an integer n, creates a new dy-
namic region and allocates an array of size n within the region using rnew.

int k(int n) {
int result;
{ region<‘r> h;

int ?arr = rnew(h) {for i < n : i};
result = process(h, arr);

}
return result;

}

It then passes the handle for the region and the array to some processing
function. Note that the processing function is free to allocate objects into
the region ‘r using the supplied handle. After processing the array, we
exit the region which deallocates the array, and then return the calculated
result.

LIFO regions are particularly useful in this circumstance; i.e. when you
want the result of a function call to be allocated in the caller, but you don’t
know how much space you’ll need.l An another example, consider the
following usage of the Cyclone library function rprintf:

{ region<‘r> h;
char ?‘H s = get_username();
char ?‘r z = rprintf(h,"hello %s\n");
emit(z);

}

After allocating the region and acquring a user’s name, the region han-
dle is passed to the library function rprintf. rprintf is like sprintf,
except that it does not print to a fixed-sized buffer; instead it allocates a
buffer in a region, places the formatted output in the buffer, and returns a
pointer to the buffer. In the example above, z is initialized with a pointer
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to the string “hello” followed by the user’s name; z is allocated in h’s re-
gion. Unlike sprintf, there is no risk of a buffer overflow, and unlike
snprintf, there is no risk of passing a buffer that is too small. Moreover,
the allocated buffer will be freed when the region goes out of scope, just
as a stack-allocated buffer would be.

Finally, it is worth remarking that it may help to think of the heap as
just a LIFO region with unbounded scope. Indeed, you can use the global
variable Core::heap_region as a handle on the heap, and new and
malloc(...) are just abbreviations for rnew(Core::heap_region)
and rmalloc(Core::heap_region,...) respectively.

Region Polymorphism

Another key concept you need to understand is called region polymorphism.
This is just a fancy way of saying that you can write functions in Cyclone
that don’t care which specific region a given object lives in, as long as it’s
still alive. For example, the function foo from the beginning of this section
is a region-polymorphic function. To make this clear, let us re-write the
foo function (page 18) making the region of its argument explicit:

void foo(struct Point *@region(‘r) p) {
p->y = 1234;
return;

}

The function is parameterized by a region variable ‘r, and accepts a pointer
to a Point that lives in region ‘r. When calling foo, ‘r can be instantiated
with any region you like, including the heap ‘H, or a region local to a
function. So, for instance, we can write the following:

void g() {
struct Point p = {0,1};
struct Point *@region(‘g) ptr1 = &p;
struct Point *@region(‘H) ptr2 = new Point{2,3};
foo(ptr1);
foo(ptr2);

}

Note that in the first call to foo, we are passing a pointer into region ‘g,
and in the second call to foo, we are passing in a pointer into the heap. In
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the first call, ‘r is implicitly instantiated with ‘g, and in the second call,
with ‘H.

Region polymorphism is a specific form of paramteric polymorphism which
Cyclone supports in general, as we describe below.

Default Region Annotations

Cyclone automatically assigns region variables to function arguments that
have pointer type, so you rarely have to write them. For instance, foo can
be written simply as:

void foo(struct Point * p) {
p->y = 1234;
return;

}

As another example, if you write the following:

void h(struct Point * p1, struct Point * p2) {
p1->x += p2->x;
p2->x += p2->y;

}

then Cyclone fills in the region parameters for you by assuming that the
points p1 and p2 can live in any two regions, and so it generates assigns
fresh names for the region variables of p1 and p2, e.g. something like ‘r1
and ‘r2. To make this explicit, we would write:

void h(struct Point *@region(‘r1) p1,
struct Point *@region(‘r2) p2) {

p1->x += p2->x;
p2->x += p2->y;

}

Now we can call h with pointers into any two regions, or even two point-
ers into the same region. This is because the code is type-correct for all
regions ‘r1 and ‘r2.

Occasionally, you will have to put region parameters in explicitly. This
happens when you need to assert that two pointers point into the same
region. Consider for instance the following function:
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void j(struct Point * p1, struct Point * p2) {
p1 = p2;

}

Cyclone will reject the code because it assumes that in general, p1 and p2
might point into different regions. The error is roughly the following:

foo.cyc:2: type mismatch:
struct Point *‘GR0 != struct Point *‘GR1

‘GR1 and ‘GR0 are not compatible.
(variable types are not the same)

Cyclone has picked the name GR1 for p1’s region, and GR2 for p2’s region.
That is, Cyclone fills in the missing regions as follows:

void j(struct Point *@region(‘GR1) p1,
struct Point *@region(‘GR2) p2) {

p1 = p2;
}

Now it is clear that the assignment does not type-check because the types
of p1 and p2 differ. In other words, ‘GR1 and ‘GR2 might be instantiated
with different regions, in which case the code would be incorrect. For
example, we could call j as follows:

void g() {
struct Point p = {0,1};
struct Point *@region(‘g) ptr1 = &p;
struct Point *@region(‘H) ptr2 = new Point{2,3};
j(ptr2,ptr1);

}

Doing this would effectively allow us to assign ptr1 to ptr2, which is
unsafe in general, since the heap outlives the stack region for g.

But you can require that j’s regions be instantiated with the same re-
gion by explicitly specifying the same explicit region variable for each
pointer. Thus, the following code does type-check:

void j(struct Point *@region(‘r) p1,
struct Point *@region(‘r) p2) {

p1 = p2;
}
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This would prevent the situation in function g above, since the arguments
passed to j must be allocated in the same region.

So, Cyclone assumes that each pointer argument to a function is in a
(potentially) different region unless you specify otherwise. The reason we
chose this as the default is that (a) it is often the right choice for code, (b)
it is the most general type in the sense that if it does work out, clients will
have the most lattitude in passing arguments from different regions or the
same region to the function.

What region variable is chosen for return-types that mention pointers?
Here, there is no good answer because the region of the result of a function
cannot be easily determined without looking at the body of the function,
which defeats separate compilation of function definitions from their proto-
types. Therefore, we have arbitrarily chosen the heap as the default region
for function results. Consequently, the following code type-checks:

struct Point * good_newPoint(int x,int y) {
return new Point{x,y};

}

This is because the new operator returns a pointer to the heap, and the
default region for the return type is the heap.

This also explains why the newPoint function (page 18) for allocating
a new Point does not type-check:

struct Point *newPoint(int x,int y) {
struct Point result = {x,y};
return &result;

}

The expression &result is a pointer into region ‘newPoint but the result
type of the function must be a pointer into the heap (region ‘H).

If you want to return a pointer that is not in the heap region, then you
need to put the region in explicitly. For instance, the following code:

int * id(int *x) {
return x;

}

will not type-check. To see why, let us rewrite the code with the default
region annotations filled in. The argument is assumed to be in a region
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‘GR1, and the result is assumed to be in the heap, so the fully elaborated
code is:

int *@region(‘H) id(int *@region(‘GR1) x) {
return x;

}

Now the type-error is manifest. To fix the code, we must put in explicit
regions to connect the argument type with the result type. For instance,
we might write:

int *@region(‘r) id(int *@region(‘r) x) {
return x;

}

or using the abbreviation:

int *‘r id(int *‘r x) {
return x;

}

Region Summary

In summary, each pointer in Cyclone points into a given region and this
region is reflected in the type of the pointer. Cyclone will not let you deref-
erence a pointer into a deallocated region. The lexical blocks declared in
functions correspond to one type of region (a stack region), and simply
declaring a variable within that block allocates storage within the region.
The storage is deallocated upon exit of the block. LIFO regions are sim-
ilar, except that a dynamic number of objects can be allocated within the
region using the region’s handle. Both stack and LIFO regions have struc-
tured lifetimes. Finally, the heap region ‘H is a special region whose dead
objects are garbage collected.

Region polymorphism and region inference make it possible to omit
many region annotations on types. By default, Cyclone assumes that unan-
notated pointer arguments in functions may live in distinct regions, and
that unannotated result pointers are in the heap. These assumptions are
not perfect, but programmers can fix the assumptions by providing ex-
plicit region annotations, and they permit Cyclone files to be separately
compiled.
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The region-based type system of Cyclone is perhaps the complicated
aspect of the language. In large part, this is because memory management
is a difficult and tricky business. We have attempted to make stack allo-
cation and region polymorphic functions simple to use without sacrific-
ing programmer control over the lifetimes of objects and without (always)
having to resort to garbage collection. As more advanced features, we also
provide even finer control over object lifetimes, but at the expense of more
work from the programmer, using the unique region and reference-counted
regions. In turn, these can be used to create dynamic regions, which support
run-time allocation like LIFO regions, but have dynamic scope. For more
information on these, and regions in general, see Section 8.

2.4 Arrays

Arrays in Cyclone are much as in C, and have a similar relationship to
pointers, as we discussed earlier. However, there are more ways to create
arrays in Cyclone, but with some restrictions on how they are initialized.

One can always declare an array and provide an initializer as in C. For
instance:

int foo[8] = {1,2,3,4,5,6,7,8};
char s[4] = "bar";

are both examples from C for creating arrays. Note that Cyclone follows
C’s conventions here, so that if you declare arrays as above within a func-
tion, then the lifetime of the array coincides with the activation record of
the enclosing scope. In other words, such arrays will be stack-allocated.
Also note that by default, char arrays are not considered zero-terminated.
To make them so, you must add the @zeroterm qualifier following the
size of the array, as in

char s[4] @zeroterm = "bar";

In both cases, the size of the array must include the zero terminator.
To create heap-allocated arrays (or strings) within a Cyclone function,

you should either use “new” or “rnew” operator with either an array ini-
tializer or an array comprehension. The following code demonstrates this:

// foo is a pointer to a heap-allocated array
int * @numelts(8) foo = new {1,2,3,4,5,6,7,8};
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// s is a checked pointer to a heap-allocated string
char * @fat s = new {’b’,’a’,’r’,0};

// a non-null pointer to the first 100 even numbers
int * @notnull @numelts(100) evens = new {for i < 100 : 2*i};

The last initializer is an array comprehension. The syntax is a simplified
for loop: it declares the iterator variable i and its bound 100, indicating
that i will iterate between 0 and 99. The part following the colon is the
expression used to initialize the ith element of the array. In this example,
the initializer is equivalent to writing

int * @notnull @numelts(100) evens = new {0,2,4,6,...,198};

Where the ... represents the remaining even numbers in the sequence.
Finally, we note that it is not possible to create arrays that contain point-

ers without initializing them first. This is just as with normal pointers as
discussed earlier. Moreover, Cyclone requires that pointerful arrays are
initialized all at once, rather than one statement at a time. This is because
Cyclone is not smart enough to know whether you have initialized an en-
tire array, in general. For example, the following code would be rejected:

void f(int * p) {
int *x[2];
x[0] = p;
x[1] = p;

}

Arrays that do not contain pointers need not be completely initialized in
general to ensure safety, so how they are initilaized is up to the program-
mer.

2.5 Structs

Cyclone supports struct types just as in C. Quite often, a C struct
declaration will be accepted without change by the Cyclone compiler. Cy-
clone supports two extensions to struct types in C: tuples, which are
lightweight, “unnamed” structs, and parameterization for creating more
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generic datastructures. We consider tuples below, and delay talking about
parameterization until a bit later;

Tuples are like structs that need not be declared in advance; they have
member or field names that are implicitly 0, 1, 2, 3, etc. For example, the
following code declares x to be a 3-tuple of an integer, a character, and a
boolean, initialized with the values 42, ’z’, and true respectively. It then
checks to see whether the third component in the tuple is true (it is) and
if so, increments the first component in the tuple.

$(int,char,bool) x = $(42,’z’,true)

if (x[2])
x[0]++;

The above code would be roughly equivalent to writing:

struct {int f0; char f1; bool f2;} x = {42,’z’,true};
if (x.f2)

x.f1++;

Thus, tuple types are written $(type1,...,typen), tuple construc-
tor expressions are written $(exp1,...,expn), and extracting the ith
component of a tuple is written using subscript notation exp[i-1]. Note
that, consistent with the rest of C, the members start with 0, not 1.

Unlike structs, tuple types are treated equivalent as long as they are
structurally equivalent. As in C, struct types are equivalent only if they
have the same tag or name. (Note that in C, all struct declarations have a
tag, even if the compiler has to generate one.)

2.6 Unions

It’s often necessary to write a function that accepts an argument with more
than one possible type. For example, in

printf("%d",x);

x should be an integer, but in

printf("%s",x);
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x should be a pointer to a sequence of characters.
If we call printf("%s",x) with an integer x, instead of a pointer

x, the program will likely crash. To prevent this, most C compilers treat
printf specially: they examine the first argument and require that the
remaining arguments have the appropriate types. However, a compiler
can’t check this if printf isn’t called with a literal format string:

printf(s,x);

where s is a string variable. This means that in C, programs that use
printf (or scanf, or a number of related functions) are vulnerable to
crashes and corrupted memory. In fact, it’s possible for someone else to
crash your program by causing it to call printf with arguments that
don’t match the format string. This is called a format string attack, and
it’s an increasingly common exploit.

Tagged Unions

Cyclone provides tagged unions so that you can safely write functions that
accept an argument with more than one possible type. Like a C union, a
Cyclone @tagged union is a type that has several possible cases. Here’s
a simple example:

@tagged union T {
int Integer;
const char *@fat String;

};
union T x = {.Integer = 3};
union T y = {.String = "hello, world"};

This declares a new tagged union type T, that can hold either an integer
or a string (remember, a literal string can always be converted to a char
*@fat in Cyclone). It also declares to union T values x and y and initial-
izes them with an integer and string respectively.

Just as with C unions, you can read and write any member of a tagged
union. However, to prevent security holes, Cyclone enforces the property
that you can only read the last member written. This prevents you from
accidentally treating an integer as if it’s a string or some other kind of
pointer.
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Cyclone enforces this safety property by inserting a hidden tag into the
union (hence the @tagged qualifier.) You can test the tag by using the
built-in tagcheck function. For instance, here is a function that uses the
real printf to safely print out the contents of a union T value, regard-
less of its contents:

bool printT(union T w) {
if (tagcheck(w.Integer))

printf("%d",w);
else

printf("%s",w);
}

Note that tagcheck(w.Integer) does not return the value of the Integer
member, but rather returns true if and only if the Integer member was
the last member written (and is thus safe to read.)

Each write to a tagged union member causes the hidden tag to be up-
dated, and each read is preceded by a check to ensure that the member
was the last one written. If you attempt to read some member other than
the last one written, then the Match exception is thrown. For example, the
following code writes the String member and then attempts to read the
Integer member, so it will throw a Match exception:

union T a;
int x;
a.String = "hello, world";
/* Next line fails */
x = a.Integer + 3;

When you have a big union, it can be awkward to use tagcheck to test
the hidden tag. You might accidentally test the wrong member or forget to
cover a member. In these cases, its probably best to use pattern matching to
determine the tag and to extract the underlying value. For example, here
is the function printT coded with pattern matching:

void printT(union T a) {
switch (a) {
case {.Integer = i}: printf("%d",i); return;
case {.String = s}: printf("%s",s); return;
}

}
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The argument a has type union T, so it is either an Integer or String.
Cyclone extends switch statements with patterns that distinguish between
the cases. The first case,

case {.Integer = i}: printf("%d",i); return;

contains a pattern, {Integer = i}, that will match only T values where
the Integer member was the last one written. The variable i is bound
to the underlying integer, and it can be used in the body of the case. For
example, printT(x) will print 3, since x holds {.Integer = 3}, and
printT(y) will print hello, world. You can find out more about pat-
terns in Section 5.

Untagged Unions

Cyclone also supports untagged unions, but there are restrictions on how
they may be used to ensure safety. In particular, you can write any value
you like into a union, but you can only read out values that do not contain
pointers. This ensures that you don’t “spoof” a pointer with an integer or
some other bogus value. So, the general rule is that you can use a normal
C union if you aren’t using pointers, but you must use a @tagged union
if you are using pointers.

Datatypes

Cyclone provides another alternative to tagged unions for supporting het-
rogenous values called a datatype. Tagged unions require space propor-
tional to the largest member (plus room for the tag.) In contrast, a datatype
only requires space for the member being used. However, datatypes can-
not be updated with a different member and require a level of indirection.

Here is our example type re-coded using a datatype declaration:

datatype T {
Integer(int);
String(const char *@fat);

};

datatype T.Integer x = Integer(3);
datatype T.String y = String("hello, world");
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void printT(datatype T@ a) {
switch (a) {
case &Integer(i): printf("%d",i); return;
case &String(s): printf("%s",s); return;
}

}

In general, a datatype declaration includes a set of constructors which
can be used to build datatype values. In this case, the constructors are
Integer and String. The Integer constructor takes an int and re-
turns a value of type datatype T.Integer. The String constructor
takes a string and returns a datatype T.String value.

Note that the types of x and y are not the same so we can’t interchange
them, nor can we pass them directly to the printT function. In particular,
their types reveal which constructor was used to build them. However, we
can manipulate pointers to these values in an abstract way. In particular,
we can pass a pointer to a datatype T.Integer value or a pointer to a
datatype T.String value anywhere that expects a datatype T. For
instance, we can write printT(&x) to print out the integer value in x,
and we can write printT(&y) to print out the "hello, world" string
in y.

We can use datatypes to implement a safe form of variable arguments
(or varargs), as described in Section 11. More information on Cyclone
unions is presented in Section 4.

2.7 C++, GCC and C99 Additions

C++, GCC and the ISO C99 standard have some useful new features that
we have adopted for Cyclone. From C++ we borrow the idea of names-
paces for avoiding conflicts among library and program definitions. In
short, if a function f is defined in a namespace Foo, then we would ac-
cess the function by referring to Foo::f. The Cyclone standard libraries,
such as Core or List (covered in detail in Section C) are defined each
in their own namespace. Cyclone also provides polymorphism similar to
C++ templates.

Some of the GCC and C99 features that we currently support are:
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• Statement expressions: There is a new expression form, ({ statement
expression }). The statement is executed first, then the expression,
and the value of the entire expression is the value of the expression

• Struct and Union expressions: If you’ve declared struct point{int
x; int y;}; then you can write point{.x=expression, .y=expression}
to allocate and initialize a struct point. The same sort of constructors
may be used for unions, tagged or not, as we showed above.

• // comments as in Java or C++

• Declarations can appear in any statement position. It is not necessary
to wrap braces around the declaration of a local variable.

• For-statements can include a declaration. For instance:

for (int x=0; x < n; x++) {
...

}

We have attempted to follow the C99 standard fairly closely.

2.8 Additional Features of Cyclone

So far we have focused on features common to both Cyclone and GCC ex-
tensions of C. In the remainder of this tutorial, we overview some of the
new language features that have been added to Cyclone, inspired from
other programming languages. These include (a) exceptions (as in ML
and Java), (b) type inference for local variables (as in ML), (c) paramet-
ric polymorphism (as in ML and Generic Java), (d) structural subtyping,
to approximate object-oriented features, and (e) abstract and existential
types.

In many cases, these features are useful for writing simpler code. Some
features, like polymorphism and subtyping, are necessary to type-check
or port a number of potentially-unsafe C idioms, usually involving “void
*” or the like. We conclude the tutorial by enumerating some unsafe C
idioms that are not supported in Cyclone.
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2.9 Exceptions

So far we’ve glossed over what happens when you try to dereference a
null pointer, or assign to an out-of-bounds @fat pointer. We’ve said that
Cyclone inserts checks to make sure the operation is safe, but what if the
checks fail? For safety, it would be sufficient to halt the program and print
an error message—a big improvement over a core dump, or, worse, a pro-
gram with corrupted data that keeps running.

In fact, Cyclone does something a bit more general than halting with an
error message: it throws an exception. The advantage of exceptions is that
they can be caught by the programmer, who can then take corrective action
and perhaps continue with the program. If the exception is not caught, the
program halts and prints an error message. Consider our earlier example:

FILE *f = fopen("/etc/passwd","r");
int c = getc((FILE *@notnull)f);

Suppose that there is no file /etc/passwd; then fopenwill return NULL,
and when f is cast to FILE *@notnull, the implied null check will fail.
The program will halt with an error message,

Uncaught exception Null_Exception

Null_Exception is one of a handful of standard exceptions used in Cy-
clone. Each exception is like a case of a datatype: it can carry along some
values with it. For example, the standard exception Invalid_argument
carries a string (which is a zero-terminated fat pointer). Exceptions can be
handled in try-catch statements, using pattern matching:

FILE *f = fopen("/etc/passwd","r");
int c;
try {

c = getc((FILE *@notnull)f);
}
catch {
case &Null_Exception:

printf("Error: can’t open /etc/passwd\n");
exit(1);

case &Invalid_argument(s):
printf("Error: Invalid_argument(%s)\n",s);
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exit(1);
}

Here we’ve “wrapped” the call to getc in a try-catch statement. If f
isn’t NULL and the getc succeeds, then execution just continues, ignoring
the catch. But if f is NULL, then the null check will fail and the exception
Null_Exception will be thrown; execution immediately continues with
the catch (the call to getc never happens). In the catch, the thrown
exception is pattern-matched against the cases, in order. Since the thrown
exception is Null_Exception, the first case is executed here.

There is one important difference between an exception and a case of a
datatype: with a datatype, all of the cases have to be declared at once,
while a new exception can be declared at any time. So, exceptions are an
extensible datatype. You can specify that a datatype is extensible when
you declare it, using the @extensible qualifier. For example, here’s how
to declare a new exception:

@extensible datatype exn {
My_Exception(char *@fat);

};

The type @extensible datatype exn is the type of exceptions, and
this declaration introduces a new case for the @extensible datatype
exn type: My_Exception, which carries a single value (a string). Excep-
tion values are created just like datatype values, and are thrown with a
throw statement. For example,

throw new My_Exception("some kind of error");

or

throw new Null_Exception;

In practice, “@extensible datatype” is quite a mouthful. So, Cy-
clone allows you abbreviate it with just datatype, as long as you’ve de-
clared a datatype as @extensible once. So a more typical way to declare
a new exception in Cyclone is

datatype exn {
My_Exception(char ?);

};
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2.10 Let Declarations and Pattern Matching

Sometimes, it’s painful to declare a variable because you have to write
down its type, and Cyclone types can be big when compared to their
C counterparts since they may include bounds information, regions, etc.
Therefore, Cyclone includes additional support for type inference using
let declarations. In particular, you can write:

int foo(int x) {
let y = x+3;
let z = 3.14159;
return (int)(y*z);

}

Here, we declared two variables y and z using “let.” When you use let,
you don’t have to write down the type of the variable. Rather, the compiler
infers the type from the expression that initializes the variable.

More generally, you can write “let pattern = exp;” to destruc-
ture a value into a bunch of variables. For instance, if you pass a tuple to
a function, then you can extract the components as follows:

int sum($(int,int,int) args) {
let $(x,y,z) = args;
return (x+y+z);

}

This feature is called pattern matching, and is inspired from functional
languages like ML and Haskell. Patterns can appear as part of let decla-
rations, exception clauses (as we saw above), and switch statements. For
example, we could rewrite the above code as follows using switch:

int sum($(int,int,int) args) {
switch (args) {
case $(x,y,z):

return (x+y+z);
}

}

Notice there is no need for a default case, since args will always be a
valid 3-tuple. On the other hand, if we were to pass a pointer to the tuple,
rather than a tuple itself, we would have code as follows:
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int sum($(int,int,int) *argsp) {
switch (argsp) {
case &$(x,y,z):

return (x+y+z);
default:

return 0;
}

}

The switch statement first handles the situation that the argument is a
pointer to a tuple, designated by putting an & in front of the tuple pattern.
Recall that we did something similar when matching exceptions in catch
clauses, above. The default case is for when argsp is NULL. Many more
details about pattern matching are presented in Section 5.

2.11 Subtyping

Cyclone supports “extension on the right” and “covariant depth on const”
subtyping for pointers. This simply means that you can cast a value x from
having a type “pointer to a struct with 10 fields,” to “pointer to a struct
having only the first 5 fields.” For example, if we have the following defi-
nitions:

typedef struct Point {float x,y;} *point;

typedef struct CPoint {float x,y; int color;} *cpoint;

float xcoord(point p) {
return p->x;

}

then you can call xcoord with either a point or cpoint object. You can
also cast a pointer to a tuple having 3 fields (e.g., $(int,bool,double)*)
to a pointer to a tuple having only 2 fields (e.g., $(int,bool)*). In other
words, you can forget about the “tail” of the object. This allows a degree of
polymorphism that is useful when porting C code. In addition, you can do
“deep” casts on pointer fields that are const. (It is unsafe to allow deep
casts on non-const fields.) Also, you can cast a field from being non-const
to being const. You can also cast a constant-sized array to an equivalent
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pointer to a struct or tuple. In short, Cyclone attempts to allow you to cast
one type to another as long as it is safe. Note, however, that these casts
must be explicit.

We expect to add more support for subtyping in the future (e.g., sub-
typing on function pointers, bounded subtyping, etc.)

2.12 Polymorphic Functions

Cyclone supports a fairly powerful form of parametric polymorphism. Those
of you coming from ML or Haskell will find this familiar. Those of you
coming from C++ will also find it somewhat familiar. The basic idea is
that you can write one function that abstracts the types of some of the
values it manipulates. For instance, consider the following two functions:

$(char*,int) swap1($(int,char*) x) {
return $(x[1], x[0]);

}
$(int,int) swap2($(int,int) x) {

return $(x[1], x[0]);
}

The two functions are quite similar: They both take in a pair (i.e., a
2-tuple) and return a pair with the components swapped. At the machine-
level, the code for these two functions will be exactly the same, assuming
that ints and char *s are represented the same way. So it seems silly
to write the code twice. Normally, a C programmer would replace the
definition with simply:

$(void *,void *) swap1($(void *,void *) x) {
return $(x[1], x[0]);

}

(assuming you added tuples to C). But of course, this isn’t type-safe be-
cause once I cast the values to void *, then I can’t be sure what type I’m
getting out. In Cyclone, you can instead write something like this:

$(‘b,‘a) swap($(‘a,‘b) x) {
return $(x[1],x[0]);

}
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The code is the same, but it abstracts what the types are. The types ‘a
and ‘b are type variables that can be instantiated with any word-sized,
general-purpose register type. So, for instance, you can call swap on pairs
of integers, pairs of pointers, pairs of an integer and a pointer, etc.:

let $(x,y) = swap($("hello",3)); // x is 3, y is hello
let $(w,z) = swap($(4,3)); // w is 3, z is 4

Note that when calling a polymorphic function, you need not tell it
what types you’re using to instantiate the type variables. Rather, Cyclone
figures this out through unification.

C++ supports similar functionality with templates. However, C++ and
Cyclone differ considerably in their implementation strategies. First, Cy-
clone only produces one copy of the code, whereas a C++ template is spe-
cialized and duplicated at each type that it is used. This approach requires
that you include definitions of templates in interfaces and thus defeats sep-
arate compilation. However, the approach used by Cyclone does have its
drawbacks: in particular, the only types that can instantiate type variables
are those that can be treated uniformly. This ensures that we can use the
same code for different types. The general rule is that values of the types
that instantiate a type variable must fit into a machine word and must
be passed in general-purpose (as opposed to floating-point) registers. Ex-
amples of such types include int, pointers, datatype, and xdatatype
types. Other types, including char, short, long long, float, double,
struct, and tuple types violate this rule and thus values of these types
cannot be passed to a function like swap in place of the type variables.
In practice, this means that you tend to manipulate a lot of pointers in
Cyclone code.

The combination of parametric polymorphism and sub-typing means
that you can cover a lot of C idioms where void* or unsafe casts were
used without sacrificing type-safety. We use polymorphism a lot when
coding in Cyclone. For instance, the standard library includes many con-
tainer abstractions (lists, sets, queues, etc.) that are all polymorphic in the
element type. This allows us to re-use a lot of code. In addition, unlike
C++, those libraries can be compiled once and need not be specialized. On
the downside, this style of polymorphism does not allow you to do any
type-specific things (e.g., overloading or ad-hoc polymorphism.) Some-
day, we may add support for this, but in the short run, we’re happy not to
have it.
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2.13 Polymorphic Data Structures

Just as function definitions can be parameterized by types, so can struct
definitions, datatype definitions, and even typedefs. For instance, the
following struct definition is similar to the one used in the standard
library for lists:

struct List<‘a> {‘a hd; struct List<‘a> * tl; };
typedef struct List<‘a> *list_t<‘a>;

Here, we’ve declared a struct List parameterized by a type ‘a.
The hd field contains an element of type ‘a and the tl field contains a
possibly-null pointer to a struct List with elements of type ‘a. We
then define list_t<‘a> as an abbreviation for struct List<‘a>*. So,
for instance, we can declare both integer and string lists like this:

list_t<int> ilist = new List{1,new List{2,null}};
list_t<string_t> slist = new List{.hd = "foo",

.tl = new List{"bar",null}};

Note that we use “new” as in C++ to allocate a new struct List
on the heap and return a pointer to the resulting (initialized) List object.
Note also that the field designator (“.hd”, “.tl”) are optional.

Once you have polymorphic data structures, you can write lots of use-
ful polymorphic code and use it over and over again. For instance, the
standard list library (see lib/list.h) includes functions for mapping over a
list, looking up items in a list, concatenating two lists, copying lists, sorting
lists, etc.

2.14 Abstract and Existential Types

Suppose you want to declare an abstract type for implementing stacks. In
Cyclone, the way this is accomplished is by declaring a struct that encap-
sulates the implementation type, and by adding the “abstract” qualifier
to the struct definition. For instance, if we write:

abstract struct Queue<‘a> { list_t<‘a> front, rear; };

then this declares a polymorphic Queue implementation that is abstract.
The definition of the struct is available within the unit that declares the
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Queue, but will not be made available to the outside world. (This will
be enforced by a link-time type-checker that we are currently putting to-
gether.) Typically, the provider of the Queue abstraction would write in
an interface file:

extern struct Queue<‘a>;

The abstract keyword in the implementation ensures that the definition
does not leak to a client.

A typedef can be made abstract by writing:

typedef _ foo_t;

However, our current implementation does not support later redefining
foo_t as a non-abstract typedef. The default kind for the type is B; you
can write an explicit kind like this:

typedef _::A bar_t;

Generally abstract structs are sufficient. An abstract typedef is useful in
some cases, though, such as when the abstracted type is actually int.

It’s also possible to code up “first-class” abstract data types using structs
with existentially quantified type variables. Existential types are described in
Section 13.

For an example of the use of existential types, see the fn.h and fn.cyc
files in the standard library, which implement first-class closures.

2.15 Restrictions

Though Cyclone adds many new features to C, there are also a number of
restrictions that it must enforce to ensure code does not crash. Here is a
list of the major restrictions:

• Cyclone enforces the evaluation order of subexpressions in contexts
in which C is agnostic. For example, consider the following expres-
sion

f(x=0,x=1);
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In C, the resulting value of x could either be 1 or 0, depending on
the compiler; the language makes no restriction on the order that
argument expressions should be evaluated. This allows the com-
piler more freedom in generating optimized code. However, it often
makes programs harder to reason about, and they can break in sub-
tle ways when ported to different platforms. It also can foil forms of
static analysis aimed at improving performance, such array-bounds-
or null-check elimination.

For Cyclone, we implement the following policy:

– Cyclone follows C for all those places it has a requirement, e.g.,
for comma-separated expression lists.

– Cyclone enforces the evaluation order to be right-to-left for as-
signment expressions. For example:

e1 = e2 = e3;

In this expression, Cyclone evaluates first e3, then e2, then e1.
– In all contexts, Cyclone’s evaluation order is left-to-right, e.g.,

for arguments passed to a function, and subexpressions in an
arithmetic expression.

• Cyclone does not permit some of the casts that are allowed in C be-
cause incorrect casts can lead to crashes, and it is not always possible
for us to determine what is safe. In general, you should be able to cast
something from one type to another as long as the underlying rep-
resentations are compatible. Note that Cyclone is very conservative
about “compatible” because it does not know the size or alignment
constraints of your C compiler.

• Cyclone does not support pointer arithmetic on thin pointers unless
they are zero-terminated and even then, there are checks to make
sure you can’t go past a zero. Pointer arithmetic is not unsafe in
itself, but it can lead to unsafe code when the resulting pointer is
assigned or dereferenced. You can cast the thin pointer value to a
@fat value and then do the pointer arithmetic instead.

• Cyclone inserts a NULL check when a possibly-NULL pointer is
dereferenced and it cannot determine statically that the pointer is
not NULL.
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• If a function’s return type is not “bits-only” (i.e., contains pointers),
Cyclone requires that the function executes a return statement, throws
an exception, or calls a noreturn function on every possible execu-
tion path. This is needed to ensure that the value returned from the
function has the right type, and is not just a random value left in a
register or on the stack.

• Untagged unions in Cyclone can hold arbitrary values, but you can
only read out “bits.” In particular, the members you can read out can
only have combinations of chars, ints, shorts, longs, floats, doubles,
structs of bits, or tuples of bits. Pointer types are not supported. This
avoids the situation where an arbitrary bit pattern is cast to a pointer
and then dereferenced. If you want to use multiple types, then use
@tagged unions or datatypes.

• Cyclone only supports limited forms of malloc (and calloc). You
must write malloc(sizeof(t)*n) and t must be a “bits-only”
type. You can use calloc to allocate arrays of (possibly NULL)
pointers (e.g., calloc(sizeof(char*),34)).

• Cyclone performs a static analysis to ensure that every non-numeric
(i.e., pointer) variable and struct field is initialized before it is used.
This prevents a random stack value from being used improperly.
The analysis is somewhat conservative so you may need to initialize
things earlier than you would do in C. There is only limited support
for initializing memory in a procedure separate from the one that
does the allocation.

• Cyclone does not permit gotos from one scope into another. C warns
against this practice, as it can cause crashes; Cyclone rules it out en-
tirely.

• Cyclone places some limitations on the form of switch statements
that rule out crashes like those caused by unrestricted goto. Fur-
thermore, Cyclone prevents you from accidentally falling through
from one case to another. To fall through, you must explicitly use
the fallthru keyword. Otherwise, you must explicitly break,
goto, continue, return, or throw an exception. However, ad-
jacent cases for a switch statement (with no intervening statement)
do not require an explicit fallthru.
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• Cyclone has some new keywords (beyond those of C99 and GCC)
that can no longer be used as identifiers. The list includes: abstract,
calloc, datatype, dynregion_t, export, fallthru, __gen,
let, malloc, namespace, numelts, __cyclone_port_on__, _-
_cyclone_port_off__, region, regions, reset_region, rmalloc,
rnew, tagcheck, tag_t, throw, try, using, valueof, and valueof_-
t.

• Cyclone prevents you from using pointers to stack-allocated objects
as freely as in C to avoid security holes. The reason is that each dec-
laration block is placed in a conceptual “region” and the type system
tracks the region into which a pointer points.

• Cyclone does not allow you to explicitly free a heap-allocated object.
Instead, you can either use the region mechanism or rely upon the
conservative garbage collector to reclaim the space.

In addition, there are a number of shortcomings of the current imple-
mentation that we hope to correct in the near future. For instance:

• Cyclone currently does not support nested type declarations within
a function. All struct, union, enum, datatype, and typedef
definitions must be at the top-level.

• Cyclone does not allow a typedef declaration to be shadowed by an-
other declaration.

3 Pointers

As in C, one should think of Cyclone pointers as just addresses. Oper-
ations on pointers, such as *x, x->f, and x[e], behave the same as in
C, with the exception that run-time checks sometimes precede memory
accesses. (Exactly when and where these checks occur is described be-
low.) However, Cyclone prevents memory errors such as dereferencing
dangling pointers or indexing outside an array’s bounds, so it may reject
some operations on pointers that C would accept.

In order to enforce memory safety and distinguish between different
uses of pointers, Cyclone pointer types include additional qualifiers when
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compared to their C counterparts. These qualifiers are described briefly
below and in more detail throughout this section:

• @nullable: Pointers with this qualifier may be NULL. This qualifier
is present by default and overridden by the @notnull qualifier. A
dereference of a @nullable pointer will generally be preceded by a
NULL-check.

• @notnull: Pointers with this qualifier may never be NULL, and thus
never need to be checked for NULL upon dereference. This qualifier
is not present by default and must be put in explicitly. The quali-
fier may be abbreviated by using “@” in place of the usual pointer
“*”. So, for instance, the type “int *@notnull” can be abbrevi-
ated by “int @”. Currently, the @notnull qualifier cannot be used
on pointers with the @fat qualifier.

• @thin: Pointers with this qualifier have the same representation
as in C (i.e., a single machine word.) However, arithmetic on thin
pointers is not supported except when the pointer is also qualified
as @zeroterm (see below). This qualifier is present by default and
overridden by the @fat qualifier.

• @fat: Pointers with this qualifier consist of a thin pointer plus ad-
ditional information needed to support safe pointer arithmetic and
dereferencing. (The current implementation uses three words in to-
tal.) Each dereference of a fat pointer incurs both a NULL-check and
a bounds check to ensure that the pointer points to a valid object.
The @fat qualifier cannot be used with the @notnull or @numelts
qualifiers (though we expect to change this in the future.) The numelts
operation may be applied to fat pointers to determine the number of
elements in the (forward) sequence that may be safely dereferenced.
Finally, the qualifier may be abbreviated by using “?” in place of the
usual pointer “*”. So, for instance, the type “int *@fat” can be
abbreviated by “int ?”.

• @numelts(e): The term e must be a static expression (i.e., a con-
stant expression or one involving valueof) and indicates an upper
bound on the number of objects that that the pointer refers to. For
example, if p has type T *@numelts(42), then either p is NULL
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or else for 0 ≤ i < e, the expression p[i] is guaranteed to con-
tain a T object. This qualifier may not be used in conjunction with
@fat. If omitted on a @thin pointer, then @numelts(1) is in-
serted by default. This qualifier can be abbreviated by writing the
bounds expression e in curly braces. For instance, the type “int
*@numelts(42)” can be abbreviated by “int *{42}”.

• @zeroterm: This qualifier is used for zero-terminated sequences,
such as C-style strings, and provides an alternative to fat pointers
for doing safe pointer arithmetic without knowing bounds statically.
This qualifier can only be used on pointers whose element type ad-
mits zero or NULL as a value, including integral types, and @nullable
pointer types. Arithmetic in the forward direction is possible with
zero-terminated pointers (e.g., p++) as is a subscript with a positive
index (e.g., p[i]). However, the compiler inserts code to ensure
that the index does not step over the final zero. When updating a
zero-terminated array, the compiler also ensures that the final zero is
not overwritten with a non-zero value. It is generally best to coerce
a thin, zero-terminated pointer to a fat, zero-terminated pointer to
avoid these overheads. This qualifier is only present by default for
char pointers. It can be overridden with the @nozeroterm quali-
fier. This qualifier may also be used on array types.

• @nozeroterm: This qualifier is present by default on all pointer
types except for char pointers. It is used to override the implicit
@zeroterm qualfier for char pointers. This qualifier may also be
used on array types.

• @region(‘r): This qualifier is used to indicate the region into which
a pointer points (in this case region ‘r). The qualifier may be abbre-
viated by simply writing the region name after any other Cyclone
qualifiers. For instance, the type “int *@notnull @region‘r”
may be abbreviated as “int @‘r”. The rules about default region
annotations are context-dependent and therefore described below.

• @aqual(...): This qualifier is used to specify the aliasability of the
pointer. Valid arguments to the @aqual(...) qualifier are ALIASABLE,
UNIQUE, REFCNT, RESTRICTED, each of which impose a differ-
ent aliasing discipline on the pointer. A type variable of kind Q may
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also appear as an argument. See section 9 for more details.

3.1 Pointer Subtyping

Some pointer types may be safely used in contexts where another pointer
type is expected. In particular, T*@notnull is a subtype of T*@nullable
which means that a not-null pointer can be passed anywhere a possibly-
null pointer is expected.

Similarly, a T*@numelts(42) pointer can be passed anywhere a T*@numelts(30)
pointer is expected, because the former describes sequences that have at
least 42 elements, which satisifes the constraint that it has at least 30 ele-
ments.

In addition, T*@region(‘r) is a subtype of T*@region(‘s) when
region ‘r outlives region ‘s. The heap region (‘H) outlives every region
so you can safely use a heap pointer anywhere another region is expected.
Outer blocks and outer regions outlive inner blocks and regions. For ex-
ample the following code is type-correct:

void foo(int x) {
int *@region(‘foo) y = &x;
L:{

int *@region(‘L) z = y;
}

}

because region ‘foo outlives region ‘L. By default, regions passed in to
a function outlive any regions defined in the function (because they will
live across the function call). Finally, you can specify outlives relations
among region parameters within a function’s prototype. The following
code specifies that input region ‘r outlives input region ‘s so it’s safe to
treat ‘r pointers as if they were ‘s pointers:

void bar(int *@region(‘r) x,
int *@region(‘s) y : {‘s} > ‘r);

In general, the outlives relation is specified after the function arguments
by separating the relations with a colon (:) and giving a comma-separated
list of primitive outlives relations. These outlives relations are of the form
“{‘r1,...,‘rn} > ‘r” and specify that region ‘r outlives all of the
regions ‘r1 through ‘rn.
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Finally, when T is a subtype of S, then T* is a subtype of const S*.
So, for instance, if we declare:

// nullable int pointers
typedef int * nintptr_t;
// not-nullable int pointers
typedef int *@notnull intptr_t;

then intptr_t * is a subtype of const nintptr_t *. Note, however,
that “const” is important to get this kind of deep subtyping.

The following example shows what could go wrong if we allowed deep
subtyping without the const:

void f(int *@notnull *@notnull x) {
int *@nullable *@notnull y = x;
// would be legal if int *@nullable *@notnull
// was a subtype of int *@notnull *@notnull.

*y = NULL;
// legal because *y has type int *@nullable

**x;
// seg faults even though the type of *x is
// int *@notnull

}

3.2 Pointer Coercions

In addition to pointer subtyping, Cyclone provides a number of coercions
which allow you to convert a pointer value from one type to another. For
instance, you can coerce a thin pointer with 42 elements to a fat pointer:

int arr[42];
int *@thin @numelts(42) p = arr;
int *@fat pfat = p;

As another example, you can coerce a thin, zero-terminated pointer to a
fat, zero-terminated pointer:

int strlen(char *@zeroterm s) {
char *@fat @zeroterm sfat = s;
return numelts(s);

}
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In both cases, the compiler inserts code to convert from the thin represen-
tation to an appropriate fat representation. In the former case, the bounds
information can be calculated statically. In the latter case, the bounds infor-
mation is calculated dynamically (by looking for the zero that terminates
the sequence.) In both cases, the coercion is guaranteed to succeed, so the
compiler does not emit a warning.

In other cases, a coercion can cause a run-time exception to be thrown.
For instance, if you attempt to coerce a @nullable pointer to a @notnull
pointer, and the value happens to be NULL, then the exception Null_-
Exception is thrown. In general, the compiler will warn you when you
try to coerce from one pointer representation to another where a run-time
check must be inserted, and that check might fail. A dataflow analysis
is used to avoid some warnings, but in general, it’s not smart enough to
get rid of all of them. In these cases, you can explicitly cast the pointer
from one representation to the other, and the compiler will not generate a
warning (though it will still insert the run-time check to ensure safety.)

Here is a list of some of the coercions that are possible:

• T can be coerced to S when T is a subtype of S.

• T*@nullable can be coerced to T*@notnull but might throw an
exception at run-time.

• T*@thin@numelts(c) can be coerced to T*@fat when c is a con-
stant expression.

• T*@fat can be coerced to T*@thin @numelts(c)when c is a con-
stant expression, but might throw an exception at run-time.

• T*@thin@zeroterm can be coerced to T*@fat@zeroterm and vice
versa.

• T*@thin@zeroterm can be coerced to const T*@fat@nozeroterm.

• T*@thin@zeroterm can be coerced to T*@fat@nozeroterm, but
access to the trailing zero is lost.
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3.3 Default Region Qualifiers

The rules the compiler uses for filling in @region qualifiers when they are
omitted from pointer types are a little complicated, but they are designed
to avoid clutter in the common case:

• In function-argument types, a fresh (polymorphic) region name is
used.

• In function-return types, ‘H is used.

• In type definitions, including typedef, ‘H is used.

• In function bodies, unification is used to infer the region based on
how the location assigned the pointer type is used in the function.

Thus, be warned that

typedef int * foo_t;
void g(foo_t);

is different than

void g(int *);

The reason is clear when we fill in the default region qualifiers. In the first
case, we have:

typedef int *@region(‘H) foo_t;
void g(foo_t);

whereas in the second case we have:

void g(int *@region(‘r));

3.4 Static Expression Bounds

The bound for the @numelts qualifier must be a static expression. A
static expression is either a constant expression, or an expression involv-
ing valueof(T) for a type-level expression T. The valueof construct is
used to connect the value of a run-time integer to the static bound on an
array. For example, the following function takes in an integer num and
pointer to a sequence of num integers and returns the sum of the sequence:
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int sum(tag_t<‘n> num,
int *@notnull @numelts(valueof(‘n)) p) {

int a = 0;
for (unsigned i = 0; i < num; i++)

a += p[i];
}

The type of num is specified as tag_t<‘n>. This simply means that num
holds an integer value, called ‘n, and the number of elements of p is equal
to n. This form of dependency is common enough that it can be abbrevi-
ated as follows:

int sum(tag_t num, int p[num]);

and the compiler will fill in the missing information.

4 Tagged Unions and Datatypes

In addition to struct, enum, and union, Cyclone provides @tagged
union and datatype declarations as ways to construct new aggregate
types. Like a union type, each @tagged union and datatype has a
number of variants (or members). Unlike conventional unions, an object
of a @tagged union or datatype type is exactly one variant, we can de-
tect (or discriminate) that variant at run-time, and the language prevents
using an object as though it had a different variant.

The difference between @tagged unions and datatypes is that the
former look and behave much like traditional unions, whereas the latter
look and behave more like the algebraic datatypes found in functional
languages such as ML. Furthermore, datatypes can be either closed or
@extensible. A closed datatype’s members are specified all together
when the datatype is declared, whereas an @extensible datatype sup-
ports adding new members after the fact (much like adding a new sub-
class to a class-based OO language.)

In this section, we first discuss @tagged unions, then closed datatypes,
and finally @extensible datatypes.
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4.1 Tagged Unions

A tagged union declaration looks just like a C union, except that it you
must specify the @tagged qualifier when declaring it. For example:

@tagged union Foo {
int i;
double d;
char *@fat s;

};

The primary difference with C unions is that a tagged union includes a
hidden tag. The tag indicates which member was last written. So, for
example:

union Foo x;
x.i = 3;
x.s = "hello";

causes the hidden tag to first indicate that the i member was written, and
then is updated to record that the s member was written.

When you attempt to read a member of a tagged union, a check is done
on the hidden tag to ensure that this was the last member written, and thus
the union contains a valid object of that member’s type. If some other
member was last updated, then a Match_Exception will be thrown.

You can test the hidden tag of a tagged union by using the tagcheck
operation. For example:

void printFoo(union Foo x) {
if (tagcheck(x.i))

printf("%d",x.i);
else if (tagcheck(x.d))

printf("%g",x.d);
else if (tagcheck(x.s))

printf("%s",x.s);
}

Alternatively, you can use pattern matching (described in the next section)
which will ensure that you cover all of the cases properly. For instance, the
function above may be rewritten as:
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void printFoo(union Foo x) {
switch (x) {
case {.i = i}: printf("%d",i); break;
case {.d = d}: printf("%g",d); break;
case {.s = s}: printf("%s",s); break;
}

}

If we failed to leave out one of the cases in the pattern match, then the
compiler would warn us. This is particularly helpful when you add new
variants to a tagged union, for then the compiler pinpoints the spots that
you need to update in your code. Therefore, we encourage the use of
pattern matching where possible.

4.2 Datatypes

At its simplest, a datatype looks just like an enum declaration. For ex-
ample, we could say:

datatype Color { Red, Green, Blue };

As with enum, the declaration creates a type (called datatype Color)
and three constants Red, Green, and Blue. Unlike enum, these con-
stants do not have type datatype Color. Instead, each variant has
its own type, namely datatype Color.Red, datatype Color.Green,
and datatype Color.Blue. However, a pointer to one of these values
can be treated as a sub-type of a pointer to a datatype Color. So you
can write:

datatype Color.Red red = Red;
datatype Color *c = &red;

In this simple example, we are splitting hairs, but we will soon find all
these distinctions useful.

Unlike enum, datatype variants may carry any fixed number of val-
ues, as in this example:

datatype Shape {
Point,
Circle(float),
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Ellipse(float,float),
Polygon(int,float),

};

A Point has no accompanying information, a Circle has a radius, an
Ellipse has two axis lengths, and a (regular) Polygon has a number of
sides and a radius. (The value fields do not have names, so it is often better
style to have a variant carry one value of a struct type, which of course has
named members.) This example creates five types: datatype Shape,
datatype Shape.Point, datatype Shape.Circle, datatype Shape.Ellipse,
and datatype Shape.Polygon. Like in our previous example, datatype
Shape.Point* is a subtype of datatype Shape* and Point is a con-
stant of type datatype Shape.Point.

Variants that carry one or more values are treated differently. Circle
becomes a constructor; given a float it produces an object of type datatype
Shape.Circle, for example Circle(3.0). Similarly, Ellipse(0,0)
has type datatype Shape.Ellipse (thanks to implicit casts from int
to float for 0) and Polygon(7,4.0) has type datatype Shape.Polygon.
The arguments to a constructor can be arbitrary expressions of the correct
type, for example, Ellipse(rand(), sqrt(rand())).

Here are some examples which allocate a Point and Circle respec-
tively, but then use subtyping to treat the resulting values as if they are
Shape pointers:

datatype Shape *s1 = new Point;
datatype Shape *s2 = new Circle(3.0);

Datatypes are particularly useful for building recursive structures. For
example, a small language of arithmetic expressions might look like this:

enum Unops { Negate, Invert};
enum Binops { Add, Subtract, Multiply, Divide };
typedef datatype Exp *@notnull exp_t;
datatype Exp {

Int(int),
Float(float),
Unop(enum Unops, exp_t),
Binop(enum Binops, exp_t, exp_t)

};
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A function returning an expression representing the multiplication of
its parameter by two can be written like this:

exp_t double_exp(datatype Exp e) {
return new Binop(Multiply, e, new Int(2));

}

Accessing Datatype Variants Given a value of a datatype type, such
as datatype Shape, we do not know which variant it is. It could be a
Circle or Shape, etc. In Cyclone, we use pattern matching to determine
which variant a given datatype value actually is, and to extract the argu-
ments that were used to build the datatype value. For example, here is
how you could define isCircle:

bool isCircle(datatype Shape *s) {
switch(s) {
case &Circle(r): return true;
default: return false;
}

}

When a switch statement’s argument is a pointer to a datatype, the
cases describe variants. One variant of datatype Shape * is a pointer
to a Circle, which carries one value. The corresponding pattern has &
for the pointer, Circle for the constructor name, and one identifier for
each value carried by Circle. The identifiers are binding occurrences
(declarations, if you will), and the initial values are the values of the fields
of the Circle at which s points. The scope is the extent of the case clause.

Here is another example:
[The reader is asked to indulge compiler-writers who have forgotten basic ge-

ometry.]

extern area_of_ellipse(float,float);
extern area_of_poly(int,float);
float area(datatype Shape *s) {

float ans;
switch(s) {
case &Point:

ans = 0;
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break;
case &Circle(r):

ans = 3.14*r*r;
break;

case &Ellipse(r1,r2):
ans = area_of_ellipse(r1,r2);
break;

case &Polygon(sides,r):
ans = area_of_poly(sides,r);
break;

}
return ans;

}

The cases are compared in order against s. The following are compile-
time errors:

• It is possible that a member of the datatype type matches none of
the cases. Note that default matches everything.

• A case is useless because it could only match if one of the earlier
cases match. For example, a default case at the end of the switch in
area would be an error.

As you can discover in Section 5, Cyclone has much richer pattern-
matching support than we have used here.

Polymorphism and Datatypes A datatype declaration may be poly-
morphic over types and regions just like a struct or union definition
(see the section on polymorphism). For example, here is a declaration for
binary trees where the leaves can hold some BoxKind ‘a:

datatype Tree<‘a> {
Leaf(‘a);
Node(datatype Tree<‘a>*, datatype Tree<‘a>*);

};

In the above example, the root may be in any region, but all children
will be in the heap. The following version allows the children to be in any
region, but they must all be in the same region. (The root can still be in a
different region.)
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datatype Tree<‘a,‘r> {
Leaf(‘a);
Node(datatype Tree<‘a,‘r> *‘r,

datatype Tree<‘a,‘r> *‘r);
};

Future

• Currently, given a value of a variant type (e.g., datatype Shape.Circle),
the only way to access the fields is with pattern-matching even though
the variant is known. We may provide a tuple-like syntax in the fu-
ture.

4.3 Extensible Datatypes

We now explain how an @extensible datatype type differs from a
datatype. The main difference is that later declarations may continue to
add variants. Extensible datatypes are useful for allowing clients to extend
data structures in unforeseen ways. For example:

@extensible datatype Food;
datatype Food { Banana; Grape;

Pizza(list_t<datatype Food*>) };
datatype Food { Candy; Broccoli };

After these declarations, Pizza(new List(new Broccoli, NULL))
is a well-typed expression.

If multiple declarations include the same variants, the variants must
have the same declaration (the number of values, types for the values, and
the same existential type variables).

Because different files may add different variants and Cyclone com-
piles files separately, no code can know (for sure) all the variants of an
@extensible datatype. Hence all pattern-matches against a value of
an @extensible datatype type must end with a case that matches ev-
erything, typically default.

There is one built-in @extensible datatype type: @extensible
datatype exn is the type of exceptions. Therefore, you declare new exn
constructors like this:
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datatype exn {BadFilename(string)};

The implementation of @extensible datatype types is very simi-
lar to that of datatype types, but variant tags cannot be represented as
small integers because of separate compilation. Instead, these tags are rep-
resented as pointers to unique locations in static data.

5 Pattern Matching

Pattern matching provides a concise, convenient way to bind parts of large
objects to new local variables. Two Cyclone constructs use pattern match-
ing, let declarations and switch statements. Although the latter are
more common, we first explain patterns with let declarations because they
have fewer complications. Then we describe all the pattern forms. Then
we describe switch statements.

You must use patterns to access values carried by tagged unions, in-
cluding exceptions. In other situations, patterns make code more readable
and less verbose.

Note that this section does not include rules for matching against unique
pointers; this is explained in Section 9.3.3.

5.1 Let Declarations

In Cyclone, you can write

let x = e;

as a local declaration. The meaning is the same as t x = e; where t is
the type of e. In other words, x is bound to the new variable. Patterns are
much more powerful because they can bind several variables to different
parts of an aggregate object. Here is an example:

struct Pair { int x; int y; };
void f(struct Pair pr) {

let Pair(fst,snd) = pr;
...

}
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The pattern has the same structure as a struct Pairwith parts being
variables. Hence the pattern is a match for pr and the variables are ini-
tialized with the appropriate parts of pr. Hence “let Pair(fst,snd)
= pr” is equivalent to “int fst =pr.x; int snd = pr.y”. A let-
declaration’s initializer is evaluated only once.

Patterns may be as structured as the expressions against which they
match. For example, given type

struct Quad { struct Pair p1; struct Pair p2; };

patterns for matching against an expression of type struct Quad could be
any of the following (and many more because of constants and wildcards—
see below):

• Quad(Pair(a,b),Pair(c,d))

• Quad(p1, Pair(c,d))

• Quad(Pair(a,b), p2)

• Quad(p1,p2)

• q

In general, a let-declaration has the form “let p = e;” where p is a pat-
tern and e is an expression. In our example, the match always succeeds,
but in general patterns can have compile-time errors or run-time errors.

At compile-time, the type-checker ensures that the pattern makes sense
for the expression. For example, it rejects “let Pair(fst,snd) = 0” because 0
has type int but the pattern only makes sense for type struct Pair.

Certain patterns are type-correct, but they may not match run-time val-
ues. For example, constants can appear in patterns, so “let Pair(17,snd) =
pr;” would match only when pr.x is 17. Otherwise the exception Match_-
Exception is thrown. Patterns that may fail are rarely useful and poor
style in let-declarations; the compiler emits a warning when you use them.
In switch statements, possibly-failing patterns are the norm—as we ex-
plain below, the whole point is that one of the cases’ patterns should match.
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5.2 Pattern Forms

So far, we have seen three pattern forms: variables patterns, struct pat-
terns, and constant patterns. We now describe all the pattern forms.1 For
each form, you need to know:

• The syntax

• The types of expressions it can match against (to avoid a compile-
time error)

• The expressions the pattern matches against (other expressions cause
a match failure)

• The bindings the pattern introduces, if any.

There is one compile-time rule that is the same for all forms: All vari-
ables (and type variables) in a pattern must be distinct. For example, “let
Pair(fst,fst) = pr;” is not allowed.

You may want to read the descriptions for variable and struct patterns
first because we have already explained their use informally.

• Variable patterns

– Syntax: an identifer

– Types for match: all types

– Expressions matched: all expressions

– Bindings introduced: the identifier is bound to the expression
being matched

• Wildcard patterns

– Syntax: _ (underscore, note this use is completely independent
of _ for type inference)

– Type for match: all types

– Expressions matched: all expressions

1Actually, we defer description to alias variable patterns until Section 9.6, in the
context of a discussion on Cyclone’s non-aliasable pointers.
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– Bindings introduced: none. Hence it is like a variable pattern
that uses a fresh identifier. Using _ is better style because it
indicates the value matched is not used. Notice that “let _ =
e;” is equivalent to e.

• As patterns

– Syntax: x as p where x is an identifier and p is a pattern.

– Types for match: all types

– Expressions matched: all expressions

– Bindings introduced: if the expression matches the pattern p,
then its value is bound to x. Thus, a variable pattern is simply
shorthand for “x as _”.

• Reference patterns

– Syntax: *x (i.e., the * character followed by an identifier)

– Types for match: all types

– Expressions matched: all expressions. (Very subtle notes: Cur-
rently, reference patterns may only appear inside of other pat-
terns so that the compiler can determine the region for the pointer
type assigned to x. They also may not occur under a datatype
pattern that has existential types unless there is a pointer pat-
tern in-between.)

– Bindings introduced: x is bound to the address of the expression
being matched. Hence if matched against a value of type t in
region ‘r, the type of x is t@‘r.

• Numeric constant patterns

– Syntax: An int, char, or float constant

– Types for match: numeric types

– Expressions matched: numeric values such that == applied to
the value and the pattern yields true. (Standard C numeric pro-
motions apply. Note that comparing floating point values for
equality is usually a bad idea.)

– Bindings introduced: none
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• NULL constant patterns

– Syntax: NULL

– Types for match: nullable pointer types, including ? types

– Expressions matched: NULL

– Bindings introduced: none

• Enum patterns

– Syntax: an enum constant

– Types for match: the enum type containing the constant

– Expressions matched: the constant

– Bindings introduced: none

• Tuple patterns

– Syntax: $(p1,...,pn[,...]) where p1,...,pn are patterns.
The trailing comma and ellipses (...) are optional.

– Types for match: if no ellipses, then tuple types with exactly n
fields, where pi matches the type of the tuple’s ith field. If the
ellipses are present, then matches a tuple with at least n fields.

– Expressions matched: tuples where the ith field matches pi for
i between 1 and n.

– Bindings introduced: bindings introduced by p1, . . . , pn.

• Struct patterns

– Syntax: There are three forms:

∗ X(p1,...,pn[,...]) where X is the name of a struct
with n fields and p1,...,pn are patterns. This syntax is short-
hand for X{.f1 = p1, ..., .fn = pn [,...]}where
fi is the ith field in X.

∗ X{.f1 = p1, ..., .fn = pn [,...]}where the fields
of X are f1, ..., fn but not necessarily in that order

∗ {.f1 = p1, ..., .fn = pn [,...]}which is the same
as above except that struct name X has been omitted.
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– Types for match: struct X (or instantiations when struct X
is polymorphic) such that pi matches the type of fi for i between
1 and n. If the ellipses are not present, then each member of the
struct must have a pattern.

– Expressions matched: structs where the value in fi matches pi
for i between 1 and n.

– Bindings introduced: bindings introduced by p1,...,pn

• Tagged Union patterns

– Syntax: There are two forms:

∗ X{.fi = p} where the members of X are f1, ..., fn and fi is
one of those members.

∗ {{.f1 = p which is the same as above except that union
name X has been omitted.

– Types for match: union X (or instantiations when union X is
polymorphic) such that p matches the type of fi.

– Expressions matched: tagged unions where the last member
written was fi and the value of that member matches p.

– Bindings introduced: bindings introduced by p.

• Pointer patterns

– Syntax: &p where p is a pattern

– Types for match: pointer types, including ? types. Also datatype
Foo @ (or instantiations of it) when the pattern is &Bar(p1,...,pn)
and Bar is a variant of datatype Foo and pi matches the type
of the ith value carried by Bar.

– Expressions matched: non-null pointers where the value pointed
to matches p. Note this explanation includes the case where the
expression has type datatype Foo @ and the pattern is &Bar(p1,...,pn)
and the current variant of the expression is “pointer to Bar”.

– Bindings introduced: bindings introduced by p

• Datatype patterns
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– Syntax: X if X is a variant that carries no values. Else X(p1,...,pn[,...])
where X is the name of a variant and p1, ..., pn are patterns. As
with tuple and struct patterns, the ellipses are optional.

– Types for match: datatype Foo (or instantiations of it).

– Expressions matched: If X is non-value-carrying, then X. If X is
value-carrying, then values created from the constructor X such
that pi matches the ith field.

– Bindings introduced: bindings introduced by p1,...,pn

5.3 Switch Statements

In Cyclone, you can switch on a value of any type and the case “labels”
(the part between case and the colon) are patterns. The switch expres-
sion is evaluated and then matched against each pattern in turn. The first
matching case statement is executed. Except for some restrictions, Cy-
clone’s switch statement is therefore a powerful extension of C’s switch
statement.

Restrictions

• You cannot implicitly “fall-through” to the next case. Instead, you must
use the fallthru; statement, which has the effect of transferring
control to the beginning of the next case. There are two exceptions
to this restriction: First, adjacent cases with no intervening statement
do not require a fall-through. Second, the last case of a switch does
not require a fall-through or break.

• The cases in a switch must be exhaustive; it is a compile-time error if
the compiler determines that it could be that no case matches. The
rules for what the compiler determines are described below.

• A case cannot be unreachable. It is a compile-time error if the compiler
determines that a later case may be subsumed by an earlier one. The
rules for what the compiler determines are described below. (C al-
most has this restriction because case labels cannot be repeated, but
Cyclone is more restrictive. For example, C allows cases after a de-
fault case.)
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• The body of a switch statement must be a sequence of case statements
and case statements can appear only in such a sequence. So id-
ioms like Duff’s device (such as “switch(i%4) while(i-- >=0)
{ case 3: ... }”) are not supported.

• A constant case label must be a constant, not a constant expression.
That is, case 3+4: is allowed in C, but not in Cyclone. Cyclone sup-
ports this feature with a separate construct: switch "C" (e) {
case 3+4: ... }. This construct is much more like C’s switch:
The labels must be constant numeric expressions and fallthru is
never required.

An Extension of C Except for the above restrictions, we can see Cy-
clone’s switch is an extension of C’s switch. For example, consider this
code (which has the same meaning in C and Cyclone):

int f(int i) {
switch(i) {
case 0: f(34); return 17;
case 1: return 17;
default: return i;
}

}

In Cyclone terms, the code tries to match against the constant 0. If it
does not match (i is not 0), it tries to match against the pattern 1. Every-
thing matches against default; in fact, default is just alternate notation for
“case _”, i.e., a case with a wildcard pattern. For performance reasons,
switch statements that are legal C switch statements are translated to C
switch statements. Other switch statements are translated to, “a mess of
tests and gotos”.

We now discuss some of the restrictions in terms of the above exam-
ple. Because there is no “implicit fallthrough” in non-empty cases, the
return statement in case 0 cannot be omitted. However, we can replace
the “return 17;” with “fallthru;” a special Cyclone statement that immedi-
ately transfers control to the next case. fallthru does not have to appear
at the end of a case body, so it acts more like a goto than a fallthrough.
As in our example, any case that matches all values of the type switched

68



upon (e.g., default:, case _:, case x:) must appear last, otherwise
later cases would be unreachable. (Note that other types may have even
more such patterns. For example Pair(x,y) matches all values of type
struct Pair int x; int y;).

Much More Powerful Because Cyclone case labels are patterns, a switch
statement can match against any expression and bind parts of the expres-
sion to variables. Also, fallthru can (in fact, must) bind values to the
next case’s pattern variables. This silly example demonstrates all of these
features:

extern int f(int);}
int g(int x, int y) {

// return f(x)*f(y), but try to avoid using multiplication
switch($(f(x),f(y))) {
case $(0,_): fallthru;
case $(_,0): return 0;
case $(1,b): fallthru(b+1-1);
case $(a,1): return a;
case $(a,b): return a*b;
}

}

The only part of this example using a still-unexplained feature is “fallthru(b)”,
but we explain the full example anyway. The switch expression has type
$(int,int), so all of the cases must have patterns that match this type.
Legal case forms for this type not used in the example include “case
$(_,id):”, “case $(id,_):”, “case id:”, “case _:”, and “default:”.

The code does the following:

• It evaluates the pair $(f(x), f(y)) and stores the result on the
stack.

• If f(x) returned 0, the first case matches, control jumps to the second
case, and 0 is returned.

• Else if f(y) returned 0, the second case matches and 0 is returned.
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• Else if f(x) returned 1, the third case matches, b is assigned the value
f(y) returned, control jumps to the fourth case after assigning b+1-1
to a, and a (i.e., b + 1 - 1, i.e., b, i.e., f(y)) is returned.

• Else if f(y) returned 1, the fourth case matches, a is assigned the value
f(x) returned, and a is returned.

• Else the last case matches, a is assigned the value f(x) returned, b is
assigned the value f(y) returned, and a*b is returned.

Note that the switch expression is evaluated only once. Implementation-
wise, the result is stored in a compiler-generated local variable and the
value of this variable is used for the ensuring pattern matches.

The general form of fallthrus is as follows: If the next case has no bind-
ings (i.e., identifiers in its pattern), then you must write fallthru;. If the
next case has n bindings, then you must write fallthru(e1,...,en)
where each ei is an expression with the appropriate type for the ith bind-
ing in the next case’s pattern, reading from left to right. (By appropriate
type, we mean the type of the expression that would be bound to the ith
binding were the next case to match.) The effect is to evaluate e1 through
en, bind them to the identifiers, and then goto the body of the next case.
fallthru is not allowed in the last case of a switch, not even if there is
an enclosing switch.

We repeat that fallthru may appear anywhere in a case body, but it is
usually used at the end, where its name makes the most sense. ML pro-
grammers may notice that fallthru with bindings is strictly more expres-
sive than or-patterns, but more verbose.

Case Guards We have withheld the full form of Cyclone case labels. In
addition to case p: where p is a pattern, you may write case p && e:
where p is a pattern and e is an expression of type int. (And since e1 &&
e2 is an expression, you can write case p && e1 && e2: and so on.)
Let’s call e the case’s guard.

The case matches if p matches the expression in the switch and e eval-
uates to a non-zero value. e is evaluated only if p matches and only after
the bindings caused by the match have been properly initialized. Here is
a silly example:
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extern int f(int);
int g(int a, int b) {

switch ($(a,b-1)) {
case $(0,y) && y > 1: return 1;
case $(3,y) && f(x+y) == 7 : return 2;
case $(4,72): return 3;
default: return 3;
}

}

The function g returns 1 if a is 0 and b is greater than 2. Else if x is 3,
it calls the function f (which of course may do arbitrary things) with the
sum of a and b. If the result is 7, then 2 is returned. In all other cases (x is
not 3 or the call to f does not return 7), 3 is returned.

Case guards make constant patterns unnecessary (we can replace case
3: with case x && x==3:, for example), but constant patterns are better
style and easier to use.

Case guards are not interpreted by the compiler when doing exhaus-
tiveness and overlap checks, as explained below.

Exhaustiveness and Useless-Case Checking As mentioned before, it is
a compile-time error for the type of the switch expression to have values
that none of the case patterns match or for a pattern not to match any
values that earlier patterns do not already match. Rather than explain the
precise rules, we currently rely on your intuition. But there are two rules
to guide your intuition:

• In terms of exhaustiveness checking, the compiler acts as if any case
guard might evaluate to false.

• In terms of exhaustiveness checking, numeric constants cannot make
patterns exhaustive. Even if you list out all 256 characters, the com-
piler will act as though there is another possibility you have not
checked.

We emphasize that checking does not just involve the “top-level” of
patterns. For example, the compiler rejects the switch below because the
third case is redundant:
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enum Color { Red, Green };
void f(enum Color c1, enum Color c2) {

switch ($(c1,c2)) {
case $(Red,x): return;
case $(x,Green): return;
case $(Red,Green): return;
default: return;
}

}

Rules for No Implicit Fall-Through As mentioned several times now,
Cyclone differs from C in that a case body may not implicitly fall-through
to the next case. It is a compile-time error if such a fall-through might
occur. Because the compiler cannot determine exactly if an implicit fall-
through could occur, it uses a precise set of rules, which we only sketch
here. The exact same rules are used to ensure that a function (with return
type other than void) does not “fall off the bottom.” The rules are very
similar to the rules for ensuring that Java methods do not “fall off the
bottom.”

The general intuition is that there must be a break, continue, goto, re-
turn, or throw along all control-flow paths. The value of expressions is not
considered except for numeric constants and logical combinations (using
&&, ||, and ? :) of such constants. The statement try s catch . . . is checked
as though an exception might be thrown at any point while s executes.

6 Type Inference

Cyclone allows many explicit types to be elided. In short, you write _-
(underscore) where a type should be and the compiler tries to figure out
the type for you. Type inference can make C-like Cyclone code easier to
write and more readable. For example,

_ x = malloc(sizeof(sometype_t));

is a fine substitute for

sometype_t * x = malloc(sizeof(sometype_t));
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Of course, explicit types can make code more readable, so it is often better
style not to use inference.

Inference is even more useful because of Cyclone’s advanced typing
constructs. For example, it is much easier to write down _ than a type for
a function pointer.

We now give a rough idea of when you can elide types and how types
get inferred. In practice, you tend to develop a sense of which idioms
succeed, and, if there’s a strange compiler-error message about a variable’s
type, you give more explicit information about the variable’s type.

Syntax As far as the parser is concerned, _ is a legal type specifier. How-
ever, the type-checker will immediately reject _ in these places (or at least
it should):

• As part of a top-level variable or function’s type.

• As part of a struct, union, datatype, or typedef declaration.

Note that _ can be used for part of a type. A silly example is $(_,int)
= $(3,4); a more useful example is an explicit cast to a non-nullable
pointer (to avoid a compiler warning). For example:

void f(some_big_type * x, some_big_type @ y) {
if(x != NULL) {

y = (_ *@notnull) x;
}

Semantics Except for the subtleties discussed below, using _ should not
change the meaning of programs. However, it may cause a program not
to type-check because the compiler no longer has the type information it
needs at some point in the program. For example, the compiler rejects
x->f if it does not know the type of x because the different struct types
can have members named f.

The compiler infers the types of expressions based on uses. For exam-
ple, consider:

_ x = NULL;
x = g();
x->f;
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This code will type-check provided the return type of g is a pointer to
a struct with a field named f. If the two statements were in the other
order, the code would not type-check. Also, if g returned an int, the code
would not type-check, even without the x->f expression, because the _ x
= NULL constrains x to have a pointer type.

However, the above discussion assumes that sequences of statements
are type-checked in order. This is true, but in general the type-checker’s order
is unspecified.

Subtleties In general, inference has subtle interactions with implicit co-
ercions (such as from t*@notnull to t*@nullable) and constants that
have multiple types (such as numeric constants).

The following is a desirable property: If a program is modified by re-
placing some explicit types with _ and the program still type-checks, then
its meaning is the same. This property does not hold! Here are two examples:

Numeric Types This program prints -24 1000:

int f() {
char c = 1000;
return c;
}
int g() {
_ c = 1000; // compiler infers int
return c;
}
int main() {
printf("%d %d", f(), g());
return 0;
}

Order Matters Here is an example where the function’s meaning de-
pends on the order the type-checker examines the function:

void h1(int *@notnull c, int maybe) {
_ a;
if(maybe)

a = c;
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else
a = NULL;

}

At first, the type of a is completely unconstrained. If we next consider a
= c, we will give a the type of c, namely int *@notnull, an int pointer
that cannot be NULL. Clearly that makes the assignment a = NULL prob-
lematic, but Cyclone allows assignment from nullable pointers to non-
nullable pointers; it gives a compile-time warning and inserts a run-time
check that the value is not NULL. Here the check will fail and an exception
will be raised. That is, h1(p,0) is guaranteed to raise an exception.

But what if the type-checker examines a = NULL first? Then the type-
checker will constrain a’s type to be a nullable pointer to an unconstrained
type. Then the assignment a = c will constrain that type to be int, so
the type of a is int *. An assignment from int *@notnull to int * is
safe, so there is no warning. Moreover, the assignment a = NULL is not a
run-time error.

The order of type-checking is left unspecified. In the future, we intend to move
to a system that is order-independent.

7 Polymorphism

Use ‘a instead of void *.

8 Memory Management Via Regions

8.1 Introduction

C gives programmers complete control over how memory is managed.
An expert programmer can exploit this to write very fast and/or space-
efficient programs. However, bugs that creep into memory-management
code can cause crashes and are notoriously hard to debug.

Languages like Java and ML use garbage collectors instead of leaving
memory management in the hands of ordinary programmers. This makes
memory management much safer, since the garbage collector is written by
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experts, and it is used, and, therefore, debugged, by every program. How-
ever, removing memory management from the control of the applications
programmer can make for slower programs.

Safety is the main goal of Cyclone, so we provide a garbage collector.
But, like C, we also want to give programmers as much control over mem-
ory management as possible, without sacrificing safety. Cyclone’s region
system is a way to give programmers more explicit control over memory
management.

In Cyclone, objects are placed into regions. A region is simply an area of
memory that is allocated and deallocated all at once (but not for our two
special regions; see below). So to deallocate an object, you deallocate its
region, and when you deallocate a region, you deallocate all of the objects
in the region. Regions are sometimes called “arenas” or “zones.”

Cyclone has four kinds of region:

Stack regions As in C, local variables are allocated on the runtime stack;
the stack grows when a block is entered, and it shrinks when the
block exits. We call the area on the stack allocated for the local vari-
ables of a block the stack region of the block. A stack region has a
fixed size—it is just large enough to hold the locals of the block, and
no more objects can be placed into it. The region is deallocated when
the block containing the declarations of the local variables finishes
executing. With respect to regions, the parameters of a function are
considered locals—when a function is called, its actual parameters
are placed in the same stack region as the variables declared at the
start of the function.

Lexical regions Cyclone also has lexical regions, which are so named be-
cause, like stack regions, their lifetime is delimited by the surround-
ing scope. Unlike stack regions, however, you can can add new ob-
jects to a lexical region over time. You create a lexical region in Cy-
clone with a statement,

region identifier; statement

This declares and allocates a new lexical region, named identifier, and
executes statement. After statement finishes executing, the region is
deallocated. Within statement, objects can be added to the region, as
we will explain below.
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Typically, statement is a compound statement:

{ region identifier;
statement1
...
statementn

}

The heap region Cyclone has a special region called the heap. There is
only one heap, whose type is denoted ‘H, and it is never deallo-
cated. New objects can be added to the heap at any time (the heap
can grow). Cyclone uses a garbage collector to automatically remove
objects from the heap when they are no longer needed. You can think
of garbage collection as an optimization that tries to keep the size of
the heap small. (Alternatively, you can avoid garbage collection all
together by specifying the -nogc flag when building the executable.)

Dynamic regions Stack and lexical regions obey a strictly last-in-first-out
(LIFO) lifetime discipline. This is often convenient for storing tempo-
rary data, but sometimes, the lifetime of data cannot be statically de-
termined. Such data can be allocated in a dynamic region. A dynamic
region supports deallocation at (essentially) any program point. How-
ever, before the data in a dynamic region may be accessed, the dy-
namic region must be opened. The open operation fails by throwing
an exception if the dynamic region has already been freed. Note that
each data access within a dynamic region does not require a check.
Rather, you can open a given dynamic region once, access the data
many times with no additional cost, and then exit the scope of the
open. Thus, dynamic regions amortize the cost of checking whether
or not data are still live and localize failure points. We describe dy-
namic regions in detail in Section 9.7.

Cyclone forbids dereferencing dangling pointers. This restriction is
part of the type system: it’s a compile-time error if a dangling pointer
(a pointer into a deallocated region or to a deallocated object) might be
dereferenced. There are no run-time checks of the form, “is this pointing
into a live region?” As explained below, each pointer type has a region
and objects of the type may only point into that region.
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8.2 Allocation

You can create a new object on the heap using one of a few kinds of ex-
pression:

• new expr evaluates expr, places the result into the heap, and returns
a pointer to the result. It is roughly equivalent to

t @ temp = malloc(sizeof(t));
// where t is the type of expr

*temp = expr;

For example, new 17 allocates space for an integer on the heap, ini-
tializes it to 17, and returns a pointer to the space. For another exam-
ple, if we have declared

struct Pair { int x; int y; };

then new Pair(7,9) allocates space for two integers on the heap,
initializes the first to 7 and the second to 9, and returns a pointer to
the first.

• new array-initializer allocates space for an array, initializes it accord-
ing to array-initializer, and returns a pointer to the first element. For
example,

let x = new { 3, 4, 5 };

declares a new array containing 3, 4, and 5, and initializes x to point
to the first element. More interestingly,

new { for identifier < expr1 : expr2 }

is roughly equivalent to

unsigned int sz = expr1;
t @ temp = malloc(sz * sizeof(t2)); // where t is the type of expr
for (int identifier = 0; identifier < sz; identifier++)

temp[ identifier] = expr2;
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That is, expr1 is evaluated first to get the size of the new array, the
array is allocated, and each element of the array is initialized by the
result of evaluating expr2. expr2 may use identifier, which holds the
index of the element currently being initialized.

For example, this function returns an array containing the first n pos-
itive even numbers:

int *@fat n_evens(int n) {
return new {for next < n : 2*(next+1)};

}

Note that:

– expr1 is evaluated exactly once, while expr2 is evaluated expr1

times.

– expr1 might evaluate to 0.

– expr1 might evaluate to a negative number. If so, it is implic-
itly converted to a very large unsigned integer; the allocation
is likely to fail due to insufficient memory. Currently, this will
cause a crash!!

– Currently, for array initializers are the only way to create an
object whose size depends on run-time data.

• malloc(sizeof(type)). Returns a @notnull pointer to an unini-
tialized value of type type.

• malloc(n*sizeof(type)) or malloc(sizeof(type)*n). The type
must be a bits-only type (i.e., cannot contain pointers, tagged unions,
zero-terminated values, etc.) If n is a compile-time constant expres-
sion, returns a @thin pointer with @numelts(n). If n is not a
compile-time constant, returns a @fat pointer to the sequence of n
uninitialized values.

• calloc(n,sizeof(type)). Similar to the malloc case above, but
returns memory that is zero’d. Therefore, calloc supports types
that are bits-only or zero-terminated.
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• malloc(e) where e is an expression not of one of the above forms.
If e is constant, returns a char *@numelts(e)@nozeroterm oth-
erwise returns a char *@fat@nozeroterm.

Objects within regions can be created using the following analogous
expressions.

• rnew(identifier) expr

• rnew(identifier) array-initializer

• rmalloc(identifier,sizeof(type))

• rmalloc(identifier,n*sizeof(type))

• rmalloc(identifier,sizeof(type)*n)

• rmalloc(identifier,e))

• rcalloc(identifier,n,sizeof(type))

Note that new, malloc, calloc, rnew, rmalloc and rcalloc are key-
words.

Here, the first argument specifies a region handle. The Cyclone library
has a global variable Core::heap_regionwhich is a handle for the heap
region. So, for example, rnew (heap_region) expr allocates memory
in the heap region which is initialized with expr. Moreover, new expr can
be replaced with rnew(heap_region) expr.

The only way to create an object in a stack region is declaring it as a
local variable. Cyclone does not currently support salloc; use a lexical
region instead.

8.3 Common Uses

Although the type system associated with regions is complicated, there
are some simple common idioms. If you understand these idioms, you
should be able to easily write programs using regions, and port many
legacy C programs to Cyclone. The next subsection will explain the usage
patterns of unique and reference-counted pointers, since they are substan-
tially more restrictive than other pointers.
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Remember that every pointer points into a region, and although the
pointer can be updated, it must always point into that same region (or a
region known to outlive that region). The region that the pointer points
to is indicated in its type, but omitted regions are filled in by the compiler
according to context.

When regions are omitted from pointer types in function bodies, the
compiler tries to infer the region. However, it can sometimes be too “ea-
ger” and end up rejecting code. For example, in

void f1(int * x) {
int * y = new 42;
y = &x;

}

the compiler uses y’s initializer to decide that y’s type is int * ‘H. Hence
the assignment is illegal, the parameter’s region (called ‘f1) does not out-
live the heap. On the other hand, this function type-checks:

void f2(int x) {
int * y = &x;
y = new 42;

}

because y’s type is inferred to be int * ‘f2 and the assignment makes y
point into a region that outlives ‘f2. We can fix our first function by being
more explicit:

void f1(int * x) {
int *‘f1 y = new 42;
y = &x;

}

Function bodies are the only places where the compiler tries to infer the
region by how a pointer is used. In function prototypes, type declarations,
and top-level global declarations, the rules for the meaning of omitted re-
gion annotations are fixed. This is necessary for separate compilation: we
often have no information other than the prototype or declaration.

In the absence of region annotations, function-parameter pointers are
assumed to point into any possible region. Hence, given

void f(int * x, int * y);
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we could call f with two stack pointers, a lexical-region pointer and a heap-
pointer, etc. Hence this type is the “most useful” type from the caller’s
perspective. But the callee’s body (f) may not type-check with this type.
For example, x cannot be assigned a heap pointer because we do not know
that x points into the heap. If this is necessary, we must give x the type int
*‘H. Other times, we may not care what region x and y are in so long as
they are the same region. Again, our prototype for f does not indicate this,
but we could rewrite it as

void f(int *‘r x, int *‘r y);

Finally, we may need to refer to the region for x or y in the function body.
If we omit the names (relying on the compiler to make up names), then we
obviously won’t be able to do so.

Formally, omitted regions in function parameters are filled in by fresh
region names and the function is “region polymorphic” over these names
(as well as all explicit regions).

In the absence of region annotations, function-return pointers are as-
sumed to point into the heap. Hence the following function will not type-
check:

int * f(int * x) { return x; }

Both of these functions will type-check:

int * f(int *‘H x) { return x; }
int *‘r f(int *‘r x) {return x; }

The second one is more useful because it can be called with any region.
In type declarations (including typedef) and top-level variables, omit-

ted region annotations are assumed to point into the heap. In the future,
the meaning of typedef may depend on where the typedef is used. In
the meantime, the following code will type-check because it is equivalent
to the first function in the previous example:

typedef int * foo_t;
foo_t f(foo_t x) { return x; }

If you want to write a function that creates new objects in a region
determined by the caller, your function should take a region handle as one
of its arguments. The type of a handle is region_t<‘r>, where ‘r is the
region information associated with pointers into the region. For example,
this function allocates a pair of integers into the region whose handle is r:
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$(int,int)*‘r f(region_t<‘r> r, int x, int y) {
return rnew(r) $(x,y);

}

Notice that we used the same ‘r for the handle and the return type. We
could have also passed the object back through a pointer parameter like
this:

void f2(region_t<‘r> r,int x,int y,$(int,int)*‘r *‘s p){

*p = rnew(r) $(7,9);
}

Notice that we have been careful to indicate that the region where *p
lives (corresponding to ‘s) may be different from the region for which r
is the handle (corresponding to ‘r). Here’s how to use f2:

{ region rgn;
$(int,int) *‘rgn x = NULL;
f2(rgn,3,4,&x);

}

The ‘s and ‘rgn in our example are unnecessary because they would be
inferred.

typedef, struct, and datatype declarations can all be parameter-
ized by regions, just as they can be parameterized by types. For example,
here is part of the list library.

struct List<‘a,‘r>{‘a hd; struct List<‘a,‘r> *‘r tl;};
typedef struct List<‘a,‘r> *‘r list_t<‘a,‘r>;

// return a fresh copy of the list in r2
list_t<‘a,‘r2> rcopy(region_t<‘r2> r2, list_t<‘a> x) {

list_t result, prev;

if (x == NULL) return NULL;
result = rnew(r2) List{.hd=x->hd,.tl=NULL};
prev = result;
for (x=x->tl; x != NULL; x=x->tl) {

prev->tl = rnew(r2) List(x->hd,NULL);
prev = prev->tl;
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}
return result;

}
list_t<‘a> copy(list_t<‘a> x) {

return rcopy(heap_region, x);
}

// Return the length of a list.
int length(list_t x) {

int i = 0;
while (x != NULL) {

++i;
x = x->tl;

}
return i;

}

The type list_t<type,rgn> describes pointers to lists whose elements
have type type and whose “spines” are in rgn.

The functions are interesting for what they don’t say. Specifically, when
types and regions are omitted from a type instantiation, the compiler uses
rules similar to those used for omitted regions on pointer types. More
explicit versions of the functions would look like this:

list_t<‘a,‘r2> rcopy(region_t<‘r2> r2, list_t<‘a,‘r1> x) {
list_t<‘a,‘r2> result, prev;
...

}
list_t<‘a,‘H> copy(list_t<‘a,‘r> x) { ... }
int length(list_t<‘a,‘r> x) { ... }

8.4 Type-Checking Regions

Because of recursive functions, there can be any number of live regions at
run time. The compiler uses the following general strategy to ensure that
only pointers into live regions are dereferenced:

• Use compile-time region names. Syntactically these are just type vari-
ables, but they are used differently.
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• Decorate each pointer type and handle type with one region name.

• Decorate each program point with a (finite) set of region names. We
call the set the point’s capability.

• To dereference a pointer (via *, ->, or subscript), the pointer’s type’s
region name must be in the program point’s capability. Similarly, to
use a handle for allocation, the handle type’s region name must be
in the capability.

• Enforce a type system such that the following is impossible: A pro-
gram point P’s capability contains a region name ‘r that decorates
a pointer (or handle) expression expr that, at run time, points into a
region that has been deallocated and the operation at P dereferences
expr.

This strategy is probably too vague to make sense at this point, but
it may help to refer back to it as we explain specific aspects of the type
system.

Note that in the rest of the documentation (and in common parlance)
we abuse the word “region” to refer both to region names and to run-time
collections of objects. Similarly, we confuse a block of declarations, its
region-name, and the run-time space allocated for the block. (With loops
and recursive functions, “the space allocated” for the block is really any
number of distinct regions.) But in the rest of this section, we painstak-
ingly distinguish region names, regions, etc.

8.4.1 Region Names

Given a function, we associate a distinct region name with each program
point that creates a region, as follows:

• If a block (blocks create stack regions) has label L, then the region-
name for the block is ‘L.

• If a block has no label, the compiler makes up a fresh region-name
for the block.

• In region r <‘foo> s, the region-name for the construct is ‘foo.
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• In region r s, the region-name for the construct is ‘r.

• In region h = open(k) s, the region-name for the construct is ‘r,
assuming k has type region_key_t<‘r,_> (where _ is some other
region name of no consequence).

The region name for the heap is ‘H, the region name for the unique
region in ‘U, and the region name for the reference-counted region is ‘RC.
Region names associated with program points within a function should be
distinct from each other, distinct from any region names appearing in the
function’s prototype, and should not be ‘H, ‘U, or ‘RC. (So you cannot use
H as a label name, for example.) Because the function’s return type cannot
mention a region name for a block or region-construct in the function, it is
impossible to return a pointer to deallocated storage.

In region r <‘r> s, region r s, and region r = open(k) s the type
of r is region_t<‘r> (assuming, that k has type region_key_t<‘r,_-
>). In other words, the handle is decorated with the region name for the
construct. Pointer types’ region names are explicit, although you generally
rely on inference to put in the correct one for you.

8.4.2 Capabilities

In the absence of explicit effects (see below), the capability for a program
point includes exactly:

• ‘H, ‘U, and ‘RC

• The effect corresponding to the function’s prototype. Briefly, any
region name in the prototype (or inserted by the compiler due to
an omission) is in the corresponding effect. Furthermore, for each
type variable ‘a that appears (or is inserted), “regions(‘a)” is in
the corresponding effect. This latter effect roughly means, “I don’t
know what ‘a is, but if you instantiate with a type mentioning some
regions, then add those regions to the effect of the instantiated pro-
totype.” This is necessary for safely type-checking calls that include
function pointers.

• The region names for the blocks and “region r s” statements that
contain the program point
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For each dereference or allocation operation, we simply check that the
region name for the type of the object is in the capability. It takes extremely
tricky code (such as existential region names) to make the check fail.

8.4.3 Assignment and Outlives

A pointer type’s region name is part of the type. If e1 and e2 are pointers,
then e1 = e2 is well-typed only if the region name for e2’s type “out-
lives” the region name for e1’s type. By outlives, we intuitively mean the
region corresponding to one region name will be deallocated after the re-
gion corresponding to the other region name. The rules for outlives are as
follows:

• Every region outlives itself.

• ‘H outlives every region name of R kind.

• Region names for inner blocks outlive region names for outer blocks.

• For regions in function prototypes, you can provide explicit “out-
lives” as in this example:

void f(int *‘r1*‘r2 x,int *‘r3 y : {‘r2} > ‘r1, {‘r3} > ‘r2);

This says that ‘r1 outlives ‘r2 and ‘r2 outlives ‘r3. The body will
be checked under these assumptions. Calls to f will type-check only
if the compiler knows that the region names of the actual arguments
obey the outlives assumptions.

For handles, if ‘r is a region name, there is at most one value of type
region_t<‘r> (there are 0 if ‘r is a block’s name), so there is little use
in creating variables of type region_t<‘r>.

8.4.4 Type Declarations

A struct, typedef, or datatype declaration may be parameterized by
any number of region names. The region names are placed in the list
of type parameters. They may be followed by their kind; i.e. “::R”. In
typedef declarations, region names that appear as parameters inherit
their kind from the the specification of that region name in the underly-
ing type. For example, given
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struct List<‘a,‘r>{‘a hd; struct List<‘a,‘r> *‘r tl;};

the type struct List<int,‘H> is for a list of ints in the heap, while the
type struct List<int,‘l> is for a list of ints in some lexical region.
Notice that all of the “cons cells” of the List will be in the same region
(the type of the tl field uses the same region name ‘r that is used to
instantiate the recursive instance of struct List<‘a,‘r>). However,
we could instantiate ‘a with a pointer type that has a different region
name, as long as that region has kind R.

8.4.5 Function Calls

If a function parameter or result has type int *‘r or region_t<‘r>,
the function is polymorphic over the region name ‘r. That is, the caller
can instantiate ‘r with any region in the caller’s current capability as long
as the region has the correct kind. This instantiation is usually implicit,
so the caller just calls the function and the compiler uses the types of the
actual arguments to infer the instantiation of the region names (just like it
infers the instantiation of type variables).

The callee is checked knowing nothing about ‘r except that it is in
its capability (plus whatever can be determined from explicit outlives as-
sumptions), and that it has the given kind. For example, it will be im-
possible to assign a parameter of type int*‘r to a global variable. Why?
Because the global would have to have a type that allowed it to point into
any region. There is no such type because we could never safely follow
such a pointer (since it could point into a deallocated region).

8.4.6 Explicit and Default Effects

If you are not using existential types, you now know everything you need
to know about Cyclone regions and memory management. Even if you
are using these types and functions over them (such as the closure library
in the Cyclone library), you probably don’t need to know much more than
“provide a region that the hidden types outlive”.

The problem with existential types is that when you “unpack” the type,
you no longer know that the regions into which the fields point are allo-
cated. We are sound because the corresponding region names are not in
the capability, but this makes the fields unusable. To make them usable,

88



we do not hide the capability needed to use them. Instead, we use a region
bound that is not existentially bound.

If the contents of existential packages contain only heap pointers, then
‘H is a fine choice for a region bound.

These issues are discussed in Section 13.

9 Pointers with Restricted Aliasing

9.1 Introduction

The main benefit of the regions described thus far is also their drawback:
to free data you must free an entire region. This implies that to amortize
the cost of creating a region, one needs to allocate into it many times. Fur-
thermore, the objects allocated in a region should be mostly in use until the
region is freed, or else memory will be wasted in the region that is unused
by the program.

In an attempt to alleviate each of these problems Cyclone provides a
mechanism by which individual objects in a region may be freed prior to
freeing the entire region. Pointers to objects that may be freed early must
obey an aliasing discipline to prevent dangling pointers. A static analysis
ensures that such objects can only ever be accessed through one pointer at
any time. At the time it is freed, this pointer is invalidated, thus preventing
all future accesses to the object.

Pointer types in Cyclone can be qualified by their aliasability. As of
now, there are four alias qualifiers. Each of these qualifiers must appear as
arguments to the @aqual(...) pointer qualifier mentioned in section 3.
The four alias qualifiers are:

Aliasable Pointer types are by default qualified as ALIASABLE. These
may be freely aliased, but can never be freed. For instance, int
@@aqual(ALIASABLE) is an aliasable non-null pointer to an int.

Unique The UNIQUE qualifier on a pointer allows the object pointed to
by that pointer to be deallocated individually, using the function
rufree. For freeing objects to be safe, all accesses to such objects
must be made through a single UNIQUE pointer. That is, only a single
pointer may be used to access the object at any given time; this triv-
ially guarantees that if the object is freed through its unique pointer,
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no other access to the object beyond that point is possible. Objects
that become unreachable but are not freed manually will be freed by
the garbage collector (assuming it’s not removed with -nogc). For
instance, int ?@aqual(UNIQUE) is a unique fat pointer to an int.

Reference-counted The REFCNT qualifier reference-counted qualifier also
permits freeing individual objects. Unlike the UNIQUE qualifier, mul-
tiple pointers to a single object are permitted, the number of which is
tracked dynamically via a hidden reference count stored with the ob-
ject. Additional pointers to an object are created explicitly via a call
to alias_refptr, which increases the reference count. Individual
pointers are removed via a call to rdrop_refptr; when the last
pointer is removed (i.e. the reference count is 0), the object is freed.
Like the unique region, objects that become unreachable will be freed
by the garbage collector. For instance, int *@aqual(REFCNT) is a
nullable pointer to a reference counted int.

Restricted All the alias qualifiers are arranged in a subtyping hierarchy.
The RESTRICTED qualifier is a super-type of all the other qualifiers.
A RESTRICTED pointer may not be freed nor can any aliases of the
pointer be created. For instance, int *@aqual(RESTRICTED) is a
restricted nullable pointer to an int. The subtyping hierarchy is as
below:

RESTRICTED
/ | \
/ | \
/ | \

ALIASABLE UNIQUE REFCNT

9.2 Allocation and Freeing

Unique and reference-counted pointers can be allocated in any region.
However, to support freeing individual objects from a region we use a spe-
cial allocator (see Section 9.10) that maintains additional metadata. We use
the term “reap” to refer to regions from which individual objects can be
deleted. A reap is created in a manner similar to normal regions. Unique
and reference-counted pointers that refer to objects in the heap can also be
freed. For a lexical reap we use the following form:
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reap identifier; statement

As with lexical regions, this declares and allocates a new lexical reap,
named identifier, and executes statement. After statement finishes execut-
ing, the reap is deallocated. Within statement, objects can be added to the
region. As we will explain below, these objects may also be deleted indi-
vidually prior to the deallocation of the entire reap.

The allocation mechanism for unique and reference-counted pointers
is similar to that used for region allocation described in the previous sec-
tion. The allocation functions rely on handles for alias qualifiers which
are of type aqual_t<‘q::Q>. Here ‘q is a type variable of alias qualifier
kind and may be instantiated with the alias qualifiers above. The Cyclone
libraries provide the following global variables:

aqual_t<ALIASABLE> Core::aliasable_qual
aqual_t<UNIQUE> Core::unique_qual}
aqual_t<REFCNT> Core::refcnt_qual}

which are handles for the aliasable, unique and reference-counted qual-
ifiers respectively. Note that there is no handle for the restricted qualifier.

The following expressions are used for allocation

• qnew(aq-identifier) expr

• qnew(aq-identifier) array-initializer

The qnew functions allocate in the ‘H region, i.e. the heap. They ex-
pect a alias qualifier handle. For instance, to allocate a unique integer
in the heap, one might use

int @@aqual(UNIQUE) a = qnew(Core::unique_qual) 0;

• rnew(rgn-identifier, aq-identifier)expr

• rnew(rgn-identifier, aq-identifier)array-initializer

To allocate an alias-free object in a region other than the heap the
rnew functions can be used. For instance,
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{
reap<‘r> r;
int @@aqual(UNIQUE) ‘r a = rnew(r, Core::unique_qual) 0;

}

If aq-identifier is not specified it defaults to the ALIASABLE handle.

• qmalloc(aq-identifier,sizeof(type))

• qcalloc(aq-identifier,n,sizeof(type))

Similar to qnew these functions allocate in the heap.

• rmalloc(rgn-identifier, aq-identifier,sizeof(type))

• rcalloc(rgn-identifier, aq-identifier,n,sizeof(type))

Similar to rnew these functions can be used to allocate alias restricted
pointers in the specified region. If aq-identifier is omitted, it defaults
to ALIASABLE.

Since there is no handle for the restricted qualifier, RESTRICTED qual-
ified pointers are purely abstract. As with normal region allocation, we
use very simple type inference to ease the burden of writing qualifiers on
types. For instance,

int *a = rnew(r, Core::unique_qual) 0;

suffices to allocate a unique integer in the region r.
The Cyclone library provides the following functions to free alias-free

pointers.

• Core::ufree(ptr) To free a heap directed unique pointer ufree is
used.

• Core::rufree(rgn-identifier, ptr) To free a unique pointer from a
reap rufree is used.

• Core::drop_refptr(ptr) To reduce the reference count on a heap
resident reference counted object drop_refptr is used. The ptr can
no longer be dereferenced following this call. If the reference count
on the object reaches zero then the object is freed automatically.
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• Core::rdrop_refptr(rgn-identifier, ptr) To reduce the reference
count on a reference counted object in an arbitrary region rdrop_-
refptr is used.

9.3 Unique Pointers

To ease programming with unique pointers and allow reuse of library
code, unique pointers can be aliased temporarily within a designated lex-
ical scope using a special alias pattern. If this kind of aliasing is not
sufficient, users can choose to allocate reference-counted objects; this idea
is explained in the next subsection. We also define syntax a :=: b to
allow two unique pointers a and b to be atomically swapped. Careful use
of the swap operator allows us to store unique pointers in objects that are
not themselves uniquely pointed to. We also introduce bounded poly-
morphism over alias qualifiers and add an additional kind to specify type
variables over these qualifiers. In practice, all of these mechanisms are
necessary for writing useful and reusable code.

9.3.1 Simple Unique Pointers

Having a unique pointer ensures the object pointed to is not reachable
by any other means. When pointers are first allocated, e.g. using malloc,
they are unique. Such pointers are allowed to be read through (that is, deref-
erenced or indexed) but not copied, as the following example shows:

char @fat @aqual(UNIQUE) buf = malloc(3*sizeof(char));
buf[0] = ’h’;
buf[1] = ’i’;
buf[2] = ’\0’;
...
ufree(buf);

This piece of code allocates a unique buffer, and then indexes that buffer
three times to initialize it. Because the process of storing to the buffer does
not copy its unique pointer, it can be safely freed.

When a unique pointer is copied, e.g. when passed as a parameter
to a function or stored in a datastructure, we say it has been consumed.
We ensure that consumed pointers are not read through or copied via a
dataflow analysis. When a consumed pointer is assigned to, very often it
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can be unconsumed, making it accessible again. Here is a simple example
that initializes a datastructure with unique pointers:

1 struct pair { int *@aqual(UNIQUE) x; int *@aqual(UNIQUE) y; } p;
2 int *@aqual(UNIQUE) x = new 1; // initializes x
3 p.x = x; // consumes x
4 x = new 2; // unconsumes x
5 p.y = x; // consumes x

If an attempt was made to read through or copy x between lines 3 and 4
or after line 5, the flow analysis would reject the code, as in

int *@aqual(UNIQUE) x = new 1; // initializes x
p.x = x; // consumes x
p.y = x; // rejected! x has been consumed already

When a multi-word data structure is assigned to another one, all of the
unique pointers it contains are consumed. For example:

1 struct pair { int *@aqual(UNIQUE) x; int *@aqual(UNIQUE) y; } p, q;
2 p.x = new 1; p.y = new 2;
3 q = p; // consumes p.x and p.y

By default, when a unique pointer is passed to a function, we expect
that the function will not free the pointer, store it in a data structure, or
otherwise make it unavailable to the caller. If a function violates any of
thse assumptions its type must be augmented with the attribute consume,
which indicates that a particular argument is no longer available to the
caller after the call. For example:

void foo(int *@aqual(UNIQUE) x) __attribute__((consume(1))) {
ufree(x);

}
void bar() {

int *@aqual(UNIQUE) x = malloc(sizeof(int));
foo(x);

*x;//<--- this dereference is not allowed
}

Here, the consume(1) attribute in the definition of foo indicates that the
first argument is consumed within the function body.
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Note that if you fail to free a unique pointer, it will eventually be garbage
collected.

Unique pointers have some restrictions. In particular:

• No pointer arithmetic is allowed on unique pointers. This ensures
that all unique pointers point to the beginning of the object, so that
the allocator is not confused when a pointer is passed to ufree.

• Take the address of a unique pointer is not allowed. This is because
doing so effectively creates an alias to the original pointer that cannot
be easily tracked statically.

• Unique pointers cannot be stored within datatypes (though they can
be stored in tagged unions). This is a shortcoming of the current flow
analysis.

9.3.2 Nested Unique Pointers

Directly reading a unique pointer is only allowed along a unique path. A
unique path u has the form

u ::= x | u.m | u->m | *u

where x is a local variable, and u is a unique pointer. To appreciate the
unique-path restriction, consider this incorrect code:

int f(int *@aqual(UNIQUE) *‘r x) {
int *@aqual(UNIQUE) *‘r y = x; //x and y are aliases
int *@aqual(UNIQUE) z = *y;
ufree(z);
return **x; //accesses deallocated storage!

}

Here, x is a pointer into a conventional region ‘r and thus its value can be
freely copied to y. We then extract a unique pointer pointed to by y and
free it. Then we attempt to access the deallocated storage through x.

If a unique pointer is not accessible via a unique path, it must be swapped
out atomically to be used; in Cyclone this is expressed with syntax :=:. In
particular, the code a :=:b will swap the contents of a and b. We can use
this to swap out a nested unique pointer, and replace it with a different
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one; we will often swap in NULL, since this is a unique pointer that is
always unconsumed. For example, in the code below, we define a queue
type for queues that contain unique pointers, and a function take for re-
moving the first element from the queue.

struct Queue<‘a,‘r> {
list_t<‘a *@aqual(UNIQUE),‘r> front;
list_t<‘a *@aqual(UNIQUE),‘r> rear;

};
typedef struct Queue<‘a,‘r> *‘r queue_t<‘a,‘r>;

‘a *@aqual(UNIQUE) take(queue_t<‘a> q) {
if (q->front == NULL)

throw &Empty_val; // exception: def not shown
else {

let elem = NULL;
elem :=: q->front->hd;
q->front = q->front->tl;
if (q->front == NULL) q->rear = NULL;
return elem;

}
}

Here, in order to extract the element stored in the queue (the hd portion
of the underlying list), we need to use swap, because q->front is a non-
unique pointer, and therefore q->front->hd is not a unique path.

Note that this code is not as polymorphic as it could be. In particu-
lar, the above queue definition requires its elements to be nullable unique
pointers, when they could just as easily be non-unique pointers, or even
reference-counted pointers (illustrated later), and the code for takewould
still work. This problem can be addressed, and its solution is described in
Section 9.5.

9.3.3 Pattern Matching on Unique Pointers

As described in Section 5, Cyclone supports pattern matching on struc-
tured data with let declarations and switch statements. Unique point-
ers, or structures containing unique pointers, can be matched against, while
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still ensuring that only one legal pointer to a unique object exists at any
given time.

In the simplest case, when a unique pointer to a structure is matched
against, the matching operation is treated just like a dereference. There-
fore, the pointer itself is not consumed. For example:

struct pair { int x; int y; };
void foo() {

struct pair @@aqual(UNIQUE) p = new pair(1,2);
let &pair{.x=x, .y=y} = p;
ufree(p);

}

Here, we match against the unique pointer p’s two fields x and y. Because
we don’t make a copy of p, but rather only of its fields, p is not consumed.
Therefore, p can be safely freed.

Because each of the fields matched against is assigned to the pattern
variables, unique paths through the original pointer are consumed by virtue
of being assigned. At the conclusion of the scope of the pattern, we can
unconsume any location whose pattern variable has not been consumed
or assigned to, as long as the parent pointer has not been consumed or
assigned to. Here’s an example:

struct Foo { int *@aqual(UNIQUE) x; int *@aqual(UNIQUE) y; };
void foo(struct Foo *@aqual(UNIQUE) p) {

{ let &Foo{.x=x, .y=y} = p; // consumes p->x and p->y
ufree(x); // consumes x

} // p->y is unconsumed
ufree(p->y); // p->y consumed
ufree(p); // p consumed

}

The initial match against p consumes p->x and p->y, whose contents are
copied to x and y, respectively. At the conclusion of the block, p->y is
unconsumed because it did not change, whereas p->x is not, because x
was freed within the block.

Note that the following code is illegal:

void foo(struct Foo *‘H p) {
let &Foo{.x=x, .y=y} = p; // non-unique path!
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...
}

To see why, notice that this is equivalent to

void foo(struct Foo *‘H p) {
let x = p->x;
let y = p->y;
...
}

This code is illegal because neither p->x nor p->y is a unique path. We
also do not allow * patterns to create aliases of the original unique pointer,
for the same reason we forbid &e when e is a unique pointer. Unfortu-
nately, this means we don’t provide a way to assign to matched-against
fields. However, in the case of the matched-against struct, we can just
do this with regular paths. In the above example pattern block, we could
do p->y = new 1 or something like that (even within the scope of the
pattern).

Matching against tagged unions is essentially like matching against
structures, as just described. Since we do not allow unique pointers to be
stored within datatypes, there is no change to how datatypes are matched.

9.4 Reference-counted Pointers

Cyclone also supports reference-counted pointers, which are treated quite
similarly to unique pointers. Reference-counted objects may be allocated
in any region. We define the constant Core::refcnt_qual, having type
aqual_t<REFCNT>, for creating reference-counted pointers. The caveat
here is that when you allocate something in this region, an extra word will
be prepended to your data, which contains the reference count, initialized
to 1.

As with unique pointers, no pointer arithmetic is allowed, for similar
reasons: it can occlude where the ”head” of the object is, and thus make it
impossible to find the hidden reference count. The reference count can be
accessed via the routine Core::refptr_count:

int refptr_count(‘a::TA ?@aqual(REFCNT) ptr);
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The constant NULL is allowed to have type ‘a::A ?@aqual(REFCNT),
and its reference count is always 0. Like unique pointers, implicit aliasing
is not allowed. Aliases are created explicitly using the routine Core::alias_-
refptr:

‘a ?@aqual(REFCNT) alias_refptr(‘a::TA ?@aqual(REFCNT) ptr);

This routine returns a copy of its argument, which is itself not consumed.
Furthermore, the reference count will be incremented by one. Reference
counts are reduced explicitly by the routine drop_refptr:

void drop_refptr(‘a::TA ?@aqual(REFCNT) ptr) __attribute((consume(1)));

In the case that the provided object’s reference count is 1 (and is thus
dropped to zero), the provided pointer is freed. The flow analysis will con-
sume the passed pointer (as is always the case for function arguments), so
you won’t be able to use it afterwards. Just like unique pointers, you can
“forget” reference-counted pointers without decrementing the count; this
just means you’ll never be able to free the pointer explicitly, but the GC
will get it once it becomes unreachable.

Just like unique pointers, reference-counted pointers can be stored in
normal, aliasable datastructures, and accessed using swap (e.g. x :=:
y). Because NULL is a ‘a::TA ?@aqual(REFCNT) pointer, we can al-
ways cheaply construct a pointer to swap in.

A good example of the use of unique pointers and reference-counted
pointers is in the Cyclone distribution’s tests directory—the file streambuff.cyc.
This is an implementation of a packet manipulation library with a repre-
sentation for packets (called streambuff_t’s) that is similar to Linux’s
skbuff_t’s. It uses a combination of unique header structures and reference-
counted data structures.

9.5 Qualifier Polymorphism

To allow the writing of reusable code we support both subtyping and
bounded polymorphism over alias qualifiers. Type variables that range
over the set of alias qualifiers are of kind Q are used in addition to the
other kinds.

The list data structure in the Cyclone libraries illustrates many features
of qualifier polymorphism. It has the following declaration:
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struct List<‘a::B,‘r::R,‘q::Q>{
: RESTRICTED >= aquals(‘a), RESTRICTED >= ‘q
‘a hd;
struct List<‘a,‘r,‘q> *@aqual(‘q) ‘r tl;

};
typedef struct List<‘a,‘r,‘q> *@aqual(‘q) ‘r list_t<‘a,‘r,‘q>;

Here, the structure is parameterized by three type variables. The first,
of boxed-kind, admits instantiation by pointer types. Since pointer types
may be qualified according to their aliasability, we require a bound on this
aliasability. For this purpose, we use the construct aquals(‘a). Sim-
ilar to the regions(‘a) construct, aquals(‘a) evaluates to the top-
level alias qualifier of the type that instantiates the variable ‘a. For in-
stance,aquals(int *@aqual(ALIASABLE) *@aqual(UNIQUE)) = UNIQUE.
The bound in the list declaration RESTRICTED >= aquals(‘a) states
that ‘a can be instantiated with a boxed kind with an aliasability that is a
subtype of RESTRICTED. Since RESTRICTED is at the top of the subtyping
hierarchy, this is the most general bound on the aliasability of the type.

The second type variable is of region kind. These types may not be
qualified by aliasability and thus do not appear in the bounds at all.

Finally, we have the type variable ‘q::Q, of alias qualifier kind. Thus
it can be instantiated with any type that reduces to one of the alias quali-
fiers. That is, one of ALIASABLE, UNIQUE, REFCNT, RESTRICTED or
aquals(‘a). The bound on ‘q also is the most general bound.

A list that uses unique pointers on the “spine” with reference counted
elements might be constructed as follows:

int *rc_int = qnew(Core::refcnt_qual) 0;
int *rc_int2 = qnew(Core::refcnt_qual) 1;
list_t<int*@aqual(REFCNT),Core::heap_region,Core::unique_qual> l =

rnew(Core::heap_region, Core::unique_qual)
List{rc_int,

rnew(Core::heap_region, Core::unique_qual)
List{rc_int2, NULL}};

We can also quantify over alias qualifiers in function types. For in-
stance, a function that copies a list can be defined as follows.
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list_t<‘a,‘r,‘q> rqcopy(region_t<‘r> r,aqual_t<‘q> q,
list_t<‘a,‘r2,‘p> l
: RESTRICTED >= ‘q,

ALIASABLE >= aquals(‘a),
RESTRICTED >= ‘p) {

if(l == NULL)
return NULL;

_ tl = NULL;
tl :=: l->tl;
list_t<‘a,‘r,‘q> result = rnew(r,q) List{l->hd, rqcopy(r,q,tl)};
l->tl :=: tl;
return result;

}

This function copies a list allocated in a region r2 into a region r. As
previously, the function is polymorphic in both the source and destination
regions. Furthermore, the aliasability of the new list is specified by the
handle q which has type aqual_t<‘q>. As previously, since ‘q is of
alias qualifier kind, a bound can be specified for it – this appears after
the argument list along with any effects for this function. Note that the list
that is being copied may also have a spine that is RESTRICTED as specified
by the RESTRICTED >= ‘p bound. This bound requires that we use the
swap operator (:=:) to ensure that no aliases are manufactured. Finally,
since we are copying the list, the elements of the list itself must be aliasable
– this is specified by the ALIASABLE >= aquals(‘a) bound.

9.6 Aliasing Unique Pointers

Programmers often write code that aliases values temporarily, e.g. by stor-
ing them in loop iterator variables or by passing them to functions. Such
reasonable uses would be severely hampered by “no alias” restrictions on
unique pointers. To address this problem, we introduce a special alias
pattern variable that permits temporary aliasing of a unique pointer. Here
is a simple example:

char *@fat@aqual(UNIQUE) dst, *@fat@aqual(UNIQUE) src = ...
{ let alias <‘r>char *@fat‘r x = src; // consumes src

memcpy(dst,x,numelts(x)); }
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// src unconsumed
...
ufree(src);

In general, an alias pattern has form alias <‘r>t x, where ‘r is a fresh
region variable, and t is the type of x, which may mention ‘r. The alias
pattern introduces a region ‘r, copies src to x which is treated as having
the designated type char *@fat‘r. Because ‘r is non-unique, x can
be freely aliased. As such, we can pass x to the memcpy function. The
matching operation consumes src during the block, and unconsumes it
upon exit, so that src can be ultimately freed.

Alias pattern variables are similar to regular pattern variables. Like
regular pattern variables, the matched-against expression (i.e. src in the
above example) must be a unique path, and is consumed as a result of the
match. As well, this expression can be unconsumed at the conclusion of
the surrounding block as long as it hasn’t been overwritten. However, in
the case of regular pattern variables, unconsumption also requires that the
pattern variable itself (i.e. x in the above example) hasn’t changed within
the block, while this requirement is unnecessary for alias patterns.

Intuitively, alias pattern variables are sound because we cast a unique
pointer to instead point into a fresh region, for which there is no possibility
of either creating new values or storing existing values into escaping data
structures. As such we cannot create aliases that persist beyond the sur-
rounding scope. However, we must take care when aliasing data having
recursive type. For example, the following code is unsound:

void foo(list_t<‘a, ‘r1, UNIQUE> l) {
let alias <‘r> x = (list_t<‘a, ‘r1, UNIQUE>)l;
x->tl = x; // unsound: creates alias!

}

In this case, the alias effectively created many values in the fresh region
‘r: one for each element of the list. This allows storing an alias in an
element reachable from the original expression l, so that when the block
is exited, this alias escapes.

For improved programmer convenience, the Cyclone typechecker op-
timistically inserts alias blocks around function-call arguments that are
unique pointers when the formal-parameter type is polymorphic in the
pointer’s region. If this modified call does not type-check, we remove
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the inserted alias. For example, the alias pattern in the foo function
above could be inferred, so we could instead write:

int foo() {
list_t<int,‘H,UNIQUE> l = new List(1,new List(2,NULL));
return length(l);

}

Right now, alias inference in Cyclone is fairly primitive, but could be
extended to more contexts. We plan to improve this feature in future re-
leases.

9.7 Dynamic Regions

Dynamic regions combine reference-counted or unique pointers and lex-
ical regions together to essentially create reference-counted or unique re-
gions; that is, the region is completely first class, and can be created or
freed at conceptually any program point. This is done by representing a
dynamic region as a unique (or reference-counted) pointer to an abstract
struct DynamicRegion (which internally just contains the handle to a lex-
ical region). The unique (or ref-counted) pointer is called the key. The key
serves as a run-time capability that grants access to the region. At run-
time, a key can be presented to a special open primitive, described later,
that grants lexical access to the region.

The operation new_ukey() creates a fresh dynamic region and returns
a unique key for the region; new_rckey() creates a fresh dynamic re-
gion and returns a ref-counted key for the region. The operations free_-
ukey() and free_rckey() are used to destroy unique and ref-counted
keys respectively. The free_ukey() operation reclaims the key’s region,
as well as the storage for the key. The free_rckey() operation decre-
ments the reference count, and if it’s zero, reclaims the key’s region as well
as the storage for the key. Because ref-counted keys are pointers, you can
use alias_refptr to make a copy of a ref-counted key. (Obviously, you
can’t make a copy of a unique key.) By the same token, you can pass a ref-
counted key to drop_refptr (and you can pass a unique key to ufree),
but doing so won’t actually deallocate the region, but rather only the key.
To obtain a dynamic reap (i.e. a dynamic region that supports the dele-
tion of individual objects) use new_reap_ukey and new_reap_rckey
instead.
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Given a key k, a user can access the contents of its region by temporar-
ily ‘opening the region’ within a lexical scope. This is done with the syntax
region r = open k. That is, within the remainder of the current scope,
the region handle r can be used to access k’s region. The key k is temporar-
ily consumed throughout the scope, and then unconsumed at its conclu-
sion. This prevents you from opening up the dynamic region, and then
freeing it while it’s still in use. Note that open is very similar to alias in
this way.

Here is a small example of the use of dynamic regions.

int main() {
// Create a new dynamic region
let NewDynamicRegion{<‘r> key} = new_ukey();

// At this point, we refer to the region ‘r to
// specify types, but we cannot actually access
// ‘r (i.e. it’s not in our "static capability,"
// a concept explained later)

list_t<int,‘r> x = NULL;

// We can access x by opening the region, which
// temporarily consumes the key
{ region h = open(key);

x = rnew(h) List(3,x);
}

// Now we can access the key again, but not x.
// So we have to open the region to increment
// its contents
{ region h = open(key);

int i = x->hd + 1;
x = rnew (h) List(i,x);

}

// Finally, destroy the key and the region
free_ukey(key);

}
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First, we allocate a new unique key and open it up, to reveal the name
of the key’s region (‘r), and the key itself. Because ‘r is now in scope,
we can declare a variable x that refers to it. However, because the key
key must be opened before ‘r becomes accessible, we cannot actually do
anything with x yet (like dereference it).

Next, we open up the region using key, assigning its handle to the
vairable h. Now, key is inaccessible (consumed) in the surrounding block,
which prevents us from doing anything that might cause it to be freed
while it’s in use. We can use h to allocate into ‘r, so we allocate a list
element and store it in x.

At the conclusion of the block, the region ‘r becomes inaccessible
again, so once again we cannot dereference x. However, key can now be
accessed again, so we can open it again in the following block, to add a
new list cell to x. At the conclusion of this block, key is unconsumed once
again, so we legally call free_ukey. This frees the key and the region ‘r.

You can ”share” a dynamic region key by placing it in some shared data
structure, like a global variable. Of course, you’ll then have to swap with
NULL to get it in and out of the shared data structure, as the following
code demonstrates:

struct MyContainer { <‘r>
uregion_key_t<‘r> key;
list_t<int,‘r> data;

} *\U ‘H global = NULL;

int main() {
// allocate a dynamic region, and create a list
let NewDynamicRegion{<‘r> key} = new_ukey();
list_t<int,‘r> x = NULL;
{ region h = open(key);

x = rnew(h) List(3,x);
}

// Stick the key and list in a global data
// structure. We’ve now lost direct access to
// the key and x.
global = new MyContainer{key,x};
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// But we can regain it by swapping for the
// container.
struct MyContainer *@aqual(UNIQUE) p = NULL;
global :=: p;

// Now we can use it as above
let MyContainer{<‘r2> key2, data2} = *p;
list_t<int,‘r2> d = data2;
{ region h = open(key2);

int i = d->hd + 1;
d = rnew (h) List(i,d);

}
}

Here, we define a global variable having type MyContainer, which con-
sists of a key and some data into that key’s region. The main function
allocates a unique as before, and allocates some data into its region. Then
we create a container for that key and data, and store it into the global vari-
able; this consumes key, making it inaccessible, and effectively preventing
access of x as well.

But we can then get the container back out of the global variable by
swapping its contents with NULL. Then we can open up the container,
and use the key and data as before. This way, a single dynamic region
can be used by many different functions in the program. They simply
swap out the global when they need it, operate on it, and then swap in the
result.

One problem with using this technique with unique keys arises when
you need to open the same region multiple times. The problem, of course,
is that if you swap in NULL, then whoever tries to swap it out will fail.
In other words, you can’t really do recursive opens with UNIQUE keys.
However, you can do this with REFCNT keys! Swap out the key, make a
copy of it, swap it back in, and use the copy for the open (making sure to
destroy the copy after the open).

One disadvantage of dynamic regions, which is inherited from unique
and reference-counted pointers, is that if you put a key in some shared
storage in a region ‘r, then it is not the case that when ‘r is deallocated
that the key will be destroyed automatically. It’s up to you to do the right
thing or let the GC eventually collect it. In the long run, the right thing to
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do is add a finalizer interface for regions so that we can register a routine
to deallocate a dynamic region whenever we put it in a shared data struc-
ture. The same goes for any unique pointer — we ought to have a way to
register a finalizer. This is on our To-do list.

9.8 Defaults and Shorthands

As described so far, the notation for alias qualifiers is extremely verbose.
The default qualifier annotations and bounds are intended to capture the
most common cases and reduce the burden on the programmer. Where the
defaults do not suffice, shorthand versions allow explicit types to specified
in a more compact manner.

The shorthand notation is as follows:

Alias Qualifier Specifier The strings \A, \U, \RC, \T can be used as
substitutes for @aqual(ALIASABLE), @aqual(UNIQUE), @aqual(REFCNT),
and @aqual(RESTRICTED) respectively. For example

void cons(int *\T a, int *\U b)

is equivalent to

void cmp(int *@aqual(RESTRICTED) a, int *@aqual(UNIQUE) b)

Type Variable Bound The bound on a type variable, as shown previously,
generally appears together with the effects in a function type, or
with the outlives relations for an aggregate type. However, when
the strings \A, \U, \RC, \T succeed a type variable they are in-
terpreted as a bound on the type variable. This bound is only legal
within an struct declaration or a function type; i.e. bounds may not
appear within a local variable declaration, typedefs etc. If the type
variable is of alias qualifier kind (kind Q) then this is interpreted as a
qualifier bound. If the variable is of boxed kind then it is interpreted
as an aquals bound. For instance, the function rqcopy above can be
written as
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list_t<‘a,‘r,‘q> rqcopy(region_t<‘r> r,aqual_t<‘q\T> q,
list_t<‘a\A,‘r2,‘p\T> l);

The same convention applies to aggregate types. For instance, we
could define List as follows

struct List<‘a::B\T,‘r::R,‘q::Q\T>{
‘a hd;
struct List<‘a,‘r,‘q> *@aqual(‘q) ‘r tl;

};

Heap Pointers For backward compatibility with previous versions of Cy-
clone where unique and reference counted pointers always pointed
to the heap, we support the following shorthand. T *@aqual(UNIQUE) ‘H
can be written more compactly as T *‘U; the type T *@aqual(REFCNT) ‘H
can be written as T *‘RC. This usage is deprecated.

The default qualifier bounds are as follows:

Function Types The aliasability of all parameters and return types in a
function type is ALIASABLE by default. If a formal parameter is de-
clared as T *@aqual(\T) then all subtypes of T *@aqual(RESTRICTED)
may be passed as an argument. For parametricity T *@aqual(‘q\T)
should be used instead.

Struct Types For pointers within a struct the default aliasability is ALIASABLE.
For qualifier variables ‘q::Q the default bound is RESTRICTED. The
aquals bounds for type variables is RESTRICTED by default. Thus
the following declarations are equivalent

struct PtrList<‘a::A, ‘q> {
‘a *hd;
struct PtrList<‘a,‘q> *@aqual(‘q) tl;

};

struct PtrList<‘a::A\T,‘q\T> {
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‘a *@aqual(\A) hd;
struct PtrList<‘a,‘q> *@aqual(‘q) tl;

};

Type Instantiations When a type variable is instantiated with a pointer
type we have to decide the aliasability of pointer. When instantiated
in a function type or an aggregate type the aliasability is by default
ALIASABLE. For instance, the following are equivalent:

void int_list(list_t<int*> l);
void int_list(list_t<int *@aqual(\A)> l);

struct Wrapper {
list_t<int*> l;

}
struct Wrapper {

list_t<int*@aqual(ALIASABLE)> l;
}

In variable declarations the default is RESTRICTED to allow for more
aggressive unification. For instance

void int_list(list_t<int*@aqual(\T)> l) {
list_t<int*> cp = l;

}

In the local variable declaration the bound defaults to RESTRICTED
so that unification with the formal succeeds.

9.9 The Outlives Relation for Reaps

Recall from Section 8.4.3 that the subtyping for region qualifiers is defined
in terms of the lifetimes of the regions. We say that a region ‘r outlives a
region ‘s if the lifetime of ‘r is strictly greater than the lifetime of ‘s. In
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such a case, it is permissible to use a pointer of type T *‘r where a T *‘s
is expected.

A consequence of the outlives relation is that a pointer declared to be of
type T *‘r may be aliased both by pointers declared to be of type T *‘a,
where ‘a outlives ‘r, as well as by pointers declared to be of type T *‘b,
where ‘b is outlived by ‘r. This relationship is illustrated by the program
in Figure 1, where, at some point during the execution of the function, a,
b, and c may all be aliases of each other.

int region_subtype(uregion_key_t<‘dyn> k, int *‘H c) {
region<‘dyn> dyn = open(k);
int *‘dyn a;
{ region<‘r> r;

int *‘r b;
if(*c) a = c; //‘H outlives ‘dyn
else a = rmalloc(dyn, 0);
b = a; //‘dyn outlives ‘r

}
}

Figure 1: An illustration of region subtyping.

The outlives relation poses a problem when it is applied to reaps. The
implementation of rufree requires both a region handle and the pointer
to the object to be deallocated to be passed as arguments. We further re-
quire that the object to be deallocated reside in the region referred to by
the handle. The outlives relation allows this constraint to be violated, as
in the example below.

region<‘r> r;
int *\qU ‘H p = rmalloc(heap_region, unique_qual, 0);
rufree(r, p); // BAD!

Since the heap outlives all other regions, the region subtyping rules
permit p to be used in place of a int *\qU ‘r pointer. Clearly, the object
to be deallocated in the call to rfree does not reside in the region ‘r.

There are a number of solutions to this problem. One option is a dy-
namic check to ensure that pointer passed to rfree actually points to a
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location within the specified region. To avoid the run time overhead, we
opted to refine the type system so as to statically guarantee that the pointer
passed to rfree points within the appropriate region. This is achieved by
limiting the use of the region subtyping for reaps.

The type of rfree is:

void rufree(region_t<‘r>, ‘a *\qU ‘r : single(‘r)) consume(2);

This type states that rfree expects a region handle and a pointer of unique
aliasability as arguments. The construct single(‘r) specifies that the
region ‘r may not be outlived by any other region. Finally, the attribute
consume(2) is a post-condition on the function which states that the
pointer passed in the second argument is no longer live, i.e., the referent
has been deallocated.

The heap region is clearly satisfies this constraint: single(‘H) is al-
ways true since the heap is not outlived by any other region. For the
other cases, recall that we know which regions may have individually-
deallocatable objects: they were declared with the form reap<‘r> r,
new_reap_ukey or new_reap_rckey.

This declaration introduces an assertion of the form single(‘r) into
the type-checking environment, which prevents the use of the outlived-by
relation for any pointer to ‘r. It also allows the single constraint in the
type of rfree to be proved.

9.10 Reap Allocator Implementation

To support deallocation of objects within a region the allocator must main-
tain some meta-data associated with each object. The current implementa-
tion uses a version of the bget allocator adapted for use with reaps. When
deallocation is rare, bget behaves much like a simple pointer bumping al-
locator and we expect performance to be competitive. However, the meta-
data does consume two additional header words for each object allocated.

For normal regions (i.e. those declared as region r, or those created
using new_ukey, or new_rckey) the simple pointer-bumping allocator is
used. Thus, if your application does not use reaps at all, then the overhead
due to bget therefore does not apply.
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10 Namespaces

As in C++, namespaces are used to avoid name clashes in code. For exam-
ple:

namespace Foo {
int x = 0;
int f() { return x; }

}

declares an integer named Foo::x and a function named Foo::f. Note
that within the namespace, you don’t need to use the qualified name. For
instance, Foo::f refers to Foo::x as simply x. We could also simply
write “namespace Foo;” (note the trailing semi-colon) and leave out
the enclosing braces. Every declaration (variables, functions, types, type-
defs) following this namespace declaration would be placed in the Foo
namespace.

As noted before, you can refer to elements of a namespace using the
“::” notation. Alternatively, you can open up a namespace with a “using”
declaration. For example, we could follow the above code with:

namespace Bar {
using Foo {

int g() { return f(); }
}
int h() { return Foo::f(); }

}

Here, we opened the Foo namespace within the definition of Bar::g.
One can also write “using Foo;” to open a namespace for the remaining
definitions in the current block.

Namespaces can nest as in C++.
Currently, namespaces are only supported at the top-level and you

can’t declare a qualified variable directly. Rather, you have to write a
namespace declaration to encapsulate it. For example, you cannot write
“int Foo::x = 3;.”

The following subtle issues and implementation bugs may leave you
scratching your head:
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• The current implementation translates qualified Cyclone variables
to C identifiers very naively: each :: is translated to _ (underscore).
This translation is wrong because it can introduce clashes that are
not clashes in Cyclone, such as in the following:

namespace Foo { int x = 7; }
int Foo_x = 9;

So avoid prefixing your identifiers with namespaces in your pro-
gram. We intend to fix this bug in a future release.

• Because #include is defined as textual substitution, the following
are usually very bad ideas: Having “namespace Foo;” or “using
Foo;” at the top level of a header file. After all, you will be chang-
ing the identifiers produced or the identifiers available in every file
that includes the header file. Having #include directives within
the scope of namespace declarations. After all, you are changing
the names of the identifiers in the header file by (further) qualifying
them. Unfortunately, the current system uses the C pre-processor
before looking at the code, so it cannot warn you of these probable
errors.

In short, you are advised to not use the “semicolon syntax” in header
files and you are advised to put all #include directives at the top
of files, before any namespace or using declarations.

• The translation of identifiers declared extern "C" is different. Given

namespace Foo { extern "C" int x; }

the Cyclone code refers to the global variable as Foo::x, but the
translation to C will convert all uses to just x. The following code
will therefore get compiled incorrectly (f will return 4):

namespace Foo { extern "C" int x; }
int f() {

int x = 2;
return x + Foo::x;

}
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11 Varargs

C functions that take a variable number of arguments (vararg functions)
are syntactically convenient for the caller, but C makes it very difficult to
ensure safety. The callee has no fool-proof way to determine the number
of arguments or even their types. Also, there is no type information for
the compiler to use at call-sites to reject bad calls.

Cyclone provides three styles of vararg functions that provide different
trade-offs for safety, efficiency, and convenience.

First, you can call C vararg functions just as you would in C:

extern "C" void foo(int x, ...);
void g() {

foo(3, 7, "hi", ’x’);
}

However, for the reasons described above, foo is almost surely unsafe.
All the Cyclone compiler will do is ensure that the vararg arguments at
the call site have some legal Cyclone type.

Actually, you can declare a Cyclone function to take C-style varargs,
but Cyclone provides no way to access the vararg arguments for this style.
That is why the example refers to a C function. (In the future, function sub-
typing could make this style less than completely silly for Cyclone func-
tions.)

The second style is for a variable number of arguments of one type:

void foo(int x, ...string_t args);
void g() {

foo(17, "hi", "mom");
}

The syntax is a type and identifer after the “...”. (The identifier is op-
tional in prototypes, as with other parameters.) You can use any identifier;
args is not special. At the call-site, Cyclone will ensure that each vararg
has the correct type, in this case string_t.

Accessing the varargs is simpler than in C. Continuing our example,
args has type string_t *@fat ‘foo in the body of foo. You retrieve
the first argument ("hi") with args[0], the second argument ("mom")
with args[1], and so on. Of course, numelts(args) tells you how
many arguments there are.
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This style is implemented as follows: At the call-site, the compiler gen-
erates a stack-allocated array with the array elements. It then passes a “fat
pointer” to the callee with bounds indicating the number of elements in
the array. Compared to C-style varargs, this style is less efficient because
there is a bounds-check and an extra level of indirection for each vararg
access. But we get safety and using vararg functions is just as convenient.
No heap allocation occurs.

A useful example of this style is in the list library:

list_t<‘a> list(... ‘a argv) {
list_t result = NULL;
for (int i = numelts(argv) - 1; i >= 0; i--)

result = new List{argv[i],result};
return result;

}

Callers can now write list(1,2,3,4,5) and get a list of 5 elements.
The third style addresses the problem that it’s often desirable to have

a function take a variable number of arguments of different types. For ex-
ample, printf works this way. In Cyclone, we could use a datatype in
conjunction with the second style. The callee then uses an array subscript
to access a vararg and a switch statement to determine its datatype vari-
ant. But this would not be very convenient for the caller—it would have
to explicitly “wrap” each vararg in the datatype type. The third style
makes this wrapping implicit. For example, the type of printf in Cyclone
is:

extern datatype PrintArg<‘r::R> {
String_pa(const char ? *@notnull @nozeroterm‘r);
Int_pa(unsigned long);
Double_pa(double);
LongDouble_pa(long double);
ShortPtr_pa(short *@notnull ‘r);
IntPtr_pa(unsigned long *@notnull ‘r);

};
typedef datatype PrintArg<‘r> *@notnull ‘r parg_t<‘r>;
int printf(const char *@fat fmt, ... inject parg_t);
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The special syntax “inject” is the syntactic distinction for the third
style. The type must be a datatype type. In the body of the vararg func-
tion, the array holding the vararg elements have this datatype type, with
the function’s region. (That is, the wrappers are stack-allocated just as the
vararg array is.)

At the call-site, the compiler implicitly wraps each vararg by finding a
datatype variant that has the expression’s type and using it. The exact
rules for finding the variant are as follows: Look in order for a variant
that carries exactly the type of the expression. Use the first variant that
matches. If none, make a second pass and find the first variant that carries
a type to which the expression can be coerced. If none, it is a compile-time
error.

In practice, the datatype types used for this style of vararg tend to be
quite specialized and used only for vararg purposes.

Compared to the other styles, the third style is less efficient because the
caller must wrap and the callee unwrap each argument. But everything is
allocated on the stack and call sites do everything implicitly. A testament
to the style’s power is the library’s implementation of printf and scanf
entirely in Cyclone (except for the actual I/O system calls, of course).

12 Definite Assignment

It is unsafe to allow memory to be used as a value of a particular type
just because the memory has been allocated at that type. In other words,
you cannot use memory that has not been properly initialized. Most safe
languages enforce this invariant by making allocation and initialization a
single operation. This solution is undesirable in Cyclone for at least two
reasons:

• Many idioms require declaring variables in a wider scope than is
convenient for initializing the variable.

• C code, which we wish to port to Cyclone, is full of separated al-
location and initialization, including all heap-allocated storage (i.e.,
malloc).

Inspired by Java’s rules for separate declaration and initialization of lo-
cal variables, Cyclone has a well-defined, sound system for checking that
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memory is written before it is used. The rules are more complicated than
in Java because we support pointers to uninitialized memory, as is nec-
essary for malloc, and because C’s order-of-evaluation is not completely
specified.

Here we begin with idioms that the analysis does and does not permit.
With a basic sense of the idea, we expect programmers can generally not
worry about the exact rules of the analysis. However, when the compiler
rejects code because memory may be uninitialized, the programmer needs
to know how to rewrite the code in order to pass the analysis. For this
reason, we also give a more complete description of the rules.

We begin with examples not involving pointers. If you are familiar
with Java’s definite assignment, you can skip this part, but note that struct
and tuple fields are tracked separately. So you can use an initialized field
before another field of the same object is initialized. (Java does not allow
separate allocation and initialization of object fields. Rather, it inserts null
or 0 for you.)

Finally, we do allow uninitialized numeric values to be accessed. Do-
ing so is dangerous and error-prone, but does not compromise type safety,
so we allow it.

The following code is accepted:

extern int maybe();
int f() {

int *x, *y, *z;
if(maybe())

x = new 3;
else

x = new 4;
while(1) {

y = x;
break;

}
if(z = new maybe() && maybe() && q = new maybe())

return q;
else

return z;
}
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In short, the analysis checks that every control-flow path between a
variable’s declaration and use includes an assignment to the variable. More
generally, the analysis works on memory locations, not just variables. The
analysis knows that loop bodies and conditional branches are only exe-
cuted if the value of certain expressions are 0 or not 0.

The following code is safe, but is not accepted:

extern int maybe();
int f() {

int * x = new 1;
int * y;
int b = maybe();
if(b)

y = 2;
if(b)
return y;

return 0;
}

The problem is that the analysis does not know that the second if-
guard is true only if the first one is. General support for such “data correla-
tion” would require reasoning about two different expressions at different
times evaluating to the same value.

Unlike Java, Cyclone supports pointers to uninitialized memory. The
following code is accepted:

extern int maybe();
int f() {

int * x;
int * z;
int ** y;
if(maybe()) {

x = new 3;
y = &x;

} else {
y = &z;
z = new 3;

}
return *y;
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}

The analysis does not know which branch of the if will be taken, so
after the conditional it knows that either “x is initialized and y points to
x” or “z is initialized and y points to z.” It merges this information to
“y points to somewhere initialized,” so the function returns an initialized
value, as required. (It is safe to return uninitialized ints, but we reject such
programs anyway.)

However, this code is rejected even though it is safe:

extern int maybe();
int f() {

int * x;
int * z;
int ** y;
if(maybe()) {

y = &x;
} else {

y = &z;
}
x = new 3;
z = new 3;
return *y;

}

The problem is that the analysis loses too much information after the
conditional. Because y may allow (in fact, does allow) access to uninitial-
ized memory and the analysis does not know exactly where y points, the
conditional is rejected.

A compelling use of pointers to uninitialized memory is porting C code
that uses malloc, such as the following (the cast is not necessary in Cy-
clone):

struct IntPair { int x; int y; };
struct IntPair * same(int z) {

struct IntPair * ans =
(struct IntPair *)malloc(sizeof(struct IntPair));

ans->x = z;
ans->y = z;
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return ans;
}

There is limited support for passing a pointer to uninitialized memory
to a function that initializes it. See Section 13.

Certain expression forms require their arguments to be fully initialized
(that is, everything reachable from the expression must be initialized) even
though the memory is not all immediately used. These forms are the ex-
pression in “let p = e” and the argument to switch. We hope to relax
these restrictions in the future.

You should now know enough to program effectively in Cyclone with-
out immediately initializing all memory. For those wanting a more com-
plete view of the language definition (i.e., what the analysis does and does
not accept), we now go into the details. Note that the analysis is sound
and well-specified—there is never a reason that the compiler rejects your
program for unexplainable reasons.

For each local variable and for each program point that allocates mem-
ory, the analysis tracks information about each field. We call each such
field a place. For example, in this code:

struct B { int * x; $(int*,int*) y;};
void f() {

struct B b;
struct B * bp = malloc(sizeof(B));
...

}

the places are b.x, b.y[0], b.y[1], bp, <1>.x, <1>.y[0], and <1>.y[1]
where we use <1> to stand for the malloc expression (a program point
that does allocation). An initialization state can be “must point to P” where
P is a path. For example, after the second declaration above, we have “bp
must point to <1>.” An ensuing assignment of the form “bp->x = new
3” would therefore change the initialization state of <1>.x. If there is not
a unique path to which a place definitely points, then we keep track of the
place’s initialization level and escapedness. A place is escaped if we do not
know exactly all of the places that must point to it. For example, both of
the following fragments would cause all the places starting with <1> to be
escaped afterwards (assuming bp must point to <1>):
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struct B * bp2; some_fun(bp);
if(maybe())

bp2 = bp;

Note that if “p must point to P,” then p is implicitly unescaped because
we cannot know that p points to P if we don’t know all the pointers to p.
The initialization level is either None or All. All means p and everying
reachable from p (following as many pointers as you want) is initialized.

Note that our choice of tracking “must point to” instead of “must alias”
forces us to reject some safe programs, such as this one:

int f() {
int * x, int *y;
int **p1;
if(maybe())
p1 = &x;
else
p1 = &y;

*p1 = new 7;
return *p1;

}

Even though p1 has not escaped, our analysis must give it initialization-
level None. Moreover, x and y escape before they are initialized, so the
conditional is rejected.

For safety reasons, once a place is escaped, any assignment to it must
be a value that is fully initialized, meaning everything reachable from the
value is initialized. This phenomenon is why the first function below is
accepted but not the second (the list_t typedefs is defined in the List
library):

list_t<‘a,‘H> copy(list_t<‘a> x) {
struct List *@notnull result, *@notnull prev;

if (x == NULL) return NULL;
result = new List{.hd=x->hd,.tl=NULL};
prev = result;
for (x=x->tl; x != NULL; x=x->tl) {

struct List *@notnull temp = malloc(sizeof(struct List));
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temp->hd = x->hd;
temp->tl = NULL;
prev->tl = temp;
prev = temp;

}
return result;

}

list_t<‘a,‘r2> rcopy(region_t<‘r2> r2, list_t<‘a> x) {
struct List *@notnull result, *@notnull prev;

if (x == NULL) return NULL;
result = rnew(r2) List{.hd=x->hd,.tl=NULL};
prev = result;
for (x=x->tl; x != NULL; x=x->tl) {

prev->tl = malloc(sizeof(struct List));
prev->tl->hd = x->hd;
prev->tl->tl = NULL;
prev = prev->tl;

}
return result;

}

In the for body, we do not know where prev must point (on the first
loop iteration it points to the first malloc site, but on ensuing iterations
it points to the second). Hence prev->tl may be assigned only fully
initialized objects.

13 Advanced Features

The features in this section are largely independent of the rest of Cyclone.
It is probably safe to skip them when first learning the language, but it is
valuable to learn them at some point because they add significant expres-
siveness to the language.
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13.1 Existential Types

The implementation of a struct type can have existentially bound type
variables (as well as region variables, tag variables, and so on). Here is a
useless example:

struct T { <‘a> ‘a f1; ‘a f2; };

Values of type struct T have two fields with the same (boxed) type, but
there is no way to determine what the type is. Different values can use
different types. To create such a value, expressions of any appropriate
type suffice:

struct T x = T{new 3, new 4};

Optionally, you can explicitly give the type being used for ‘a:

struct T x = T{<int*@notnull> new 3, new 4};

As with other lists of type variables, multiple existentially bound types
should be comma-separated.

Once a value of an existential variant is created, there is no way to
determine the types at which it was used. For example, T("hi","mom")
and T(8,3) both have type struct T.

The only way to read fields of a struct with existentially bound type
variables is pattern matching. That is, the field-projection operators (. and
->) will not type-check. The pattern can give names to the correct num-
ber of type variables or have the type-checker generate names for omitted
ones. Continuing our useless example, we can write:

void f(struct T t) {
let T{<‘b> x,y} = t;
x = y;

}

We can now see why the example is useless; there is really nothing interest-
ing that f can do with the fields of t. In other words, given T("hi","mom"),
no code will ever be able to use the strings "hi" or "mom". In any case,
the scope of the type ‘b is the same as the scope of the variables x and
y. There is one more restriction: For subtle reasons, you cannot use a ref-
erence pattern (such as *x) for a field of a struct that has existentially
bound type variables.

123



Useful examples invariably use function pointers. For a realistic li-
brary, see fn.cyc in the distribution. Here is a smaller (and sillier) example;
see the following two sections for an explanation of why the regions(‘a)
> ‘r stuff is necessary.

int f1(int x, int y) { return x+y; }
int f2(string x, int y) {printf("%s",x); return y; }
struct T<‘r::R> {<‘a> : regions(‘a) > ‘r

‘a f1;
int f(‘a, int);

};
void g(bool b) {

struct T<‘H> t;
if(b)

t = Foo(37,f1);
else

t = Foo("hi",f2);
let T{<‘b> arg,fun} = t;
‘b x = arg;
int (*f)(‘b,int) = fun;
f(arg,19);

}

We could replace the last three lines with fun(arg)—the compiler
would figure out all the types for us. Similarly, the explicit types above
are for sake of explanation; in practice, we tend to rely heavily on type
inference when using these advanced typing constructs.

13.2 The Truth About Effects, Capabilities, and Region Bounds

An effect or capability is a set of (compile-time) region names. We use effect
to refer to the region names that must be “live” for some expression to
type-check and capability to refer to the region names that are “live” at
some program point. A region bound indicates that all the regions in a set
outlive one particular region. Each program point has a set of “known
region bounds”.

The intuition is that a program point’s capability and region bounds
must imply that an expression’s effect describes live regions, else the ex-
pression does not type-check. As we’ll see, default effects for functions
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were carefully designed so that most Cyclone code runs no risk of such
an “effect check” ever failing. But using existential types effectively re-
quires a more complete understanding of the system, though perhaps not
as complete as this section presents.

The form of effects or capabilities is described as follows:

• {} is the empty set. At most the heap region is accessed by an ex-
pression having this effect.

• {‘r} is the set containing exactly the region name ‘r.

• e1 + e2 is the set containing the effects e1 and e2. That is, we write
+ for set-union.

• regions(t), where t is a type is the set containing all of the region
names contained in t and regions(‘a) for all type variables ‘a
contained in t.

The description of regions(t) appears circular, but in fact if we gave
the definition for each form of types, it would not be. The point is that
regions(‘a) is an “atomic effect” in the sense that it stands for a set
of regions that cannot be further decomposed without knowing ‘a. The
primary uses of regions(t) are descibed below.

The form of a region bound is e > r where e is an effect and r is a
region name.

We now describe the capability at each program point. On function
entry, the capability is the function’s effect (typically the regions of the
parameters and result, but fully described below). In a local block or a
growable-region statement, the capability is the capability of the enclosing
context plus the block/statement’s region name.

The known region bounds at a program point are described similarly:
On function entry, the bounds are the function prototype’s explicit bounds
(typically none, but fully described below). In a local block or a growable-
region statement, we add e > ‘r where e is the capability of the enclos-
ing context and ‘r is the block/statement’s region name. That is, we add
that the set of region names for the enclosing context describes only re-
gions that will outlive the region described by ‘r. (As usual, the compiler
generates ‘r in the common case that none is explicitly provided.) Creat-
ing a dynamic region does not introduce any region bounds, but opening
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one does. Creating a resettable growable region does not introduce
any bounds.

We can now describe an expression’s effect: If it reads or writes to
memory described by a region name ‘r, then the effect contains {‘r}.
If it calls a function with effect e, then the effect conatins e. Every function
(type) has an effect, but programmers almost never write down an explicit
effect. To do so, one puts “; e” at the end of the parameter list, wehre e
is an effect. For example, we could write:

‘a id(‘a x; {}) { return x; }

because the function does not access any memory.
If a function takes parameters of types t1,...,tn and returns a value

of type t, the default effect is simply regions(t1)+...+regions(tn)+regions(t).
In English, the default assumption is that a function may dereference any
pointers it is passed, so the corresponding regions must be live. In our
example above, the default effect would have been regions(‘a). If the
caller had instantiated ‘a with int*‘r, then with the default effect, the
type-checker would require ‘r to be live, but with the explicit effect {} it
would not. However, dangling pointers can be created only when using
existential types, so the difference is rarely noticed.

By default, a function (type) has no region bounds. That is, the func-
tion does not assume any “outlives” relationships among the regions it
accesses. Adding explicit outlives relationships enables more subtyping
in the callee and more stringent requirements at the call site (namely that
the relationship holds).

We can describe when a capability e and a set of region bounds b im-
ply an effect, although your intuition probably suffices. A “normalized
effect” is either {} or unions of “atomic effects”, where an atomic effect is
either {‘r} or regions(‘a). For any effect e1, we can easily compute
an equivalent normalized effect e2. Now, e and b imply e1 if they imply
every {‘r} and regions(‘a) in e2. To imply {‘r} (or regions(‘a)),
we need {‘r} (or regions(‘a)) to be in (a normalized effect of) e) or for
b to contain some e3 > ‘r2 such that e and b imply ‘r2 and e3 and b
imply {‘r} (or regions(‘a)). Or something like that.

All of these complications are unnecessary except for existential types,
to which we now return. Explicit bounds are usually necessary to make
values of existential types usable. To see why, consider the example from
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the previous section, with the struct declaration changed to remove the
explicit bound:

struct T<‘r::R> {<‘a> : regions(‘a) > ‘r
‘a f1;
int f(‘a, int);

};

(So the declaration of t should just have type struct T.) Now the func-
tion call f(arg,19) at the end of g will not type-check because the (de-
fault) effect for f includes regions(‘b), which cannot be established
at the call site. But with the bound, we know that regions(‘b) > ‘H,
which is sufficient to prove the call won’t read through any dangling point-
ers.

13.3 Interprocedural Memory Initialization

We currently have limited support for functions that initialize parameters.
if you have an *@notnulll1 parameter (pointing into any region), you can
use an attribute attribute ((initializes(1))) (where it’s the first parameter,
use a different number otherwise) to indicate that the function initializes
through the parameter.

Obviously, this affects the definite-assignment analysis for the callee
and the call-site. In the callee, we know the parameter is initialized, but
not what it points to. The memory pointed to must be initialized before
returning. Care must be taken to reject this code:

void f(int *@notnull*@notnull x) __attribute__((initializes(1))) {
x = new (new 0);
return x;

}

In the caller, the actual argument must point to a known location. Further-
more, this location must not be reachable from any other actual arguments,
i.e., there must be no aliases available to the callee.

Two common idioms not yet supported are:

1. The parameter is initialized only if the return value satisfies some
predicate; for example, it is 0.
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2. The caller can pass NULL, meaning do not initialize through this
parameter.

A Porting C code to Cyclone

Though Cyclone resembles and shares a lot with C, porting is not always
straightforward. Furthermore, it’s rare that you actually port an entire ap-
plication to Cyclone. You may decide to leave certain libraries or modules
in C and port the rest to Cyclone. In this chapter, we want to share with
you the tips and tricks that we have developed for porting C code to Cy-
clone and interfacing Cyclone code against legacy C code.

A.1 Semi-Automatic Porting

The Cyclone compiler includes a simple porting mode which you can use
to try to move your C code closer to Cyclone. The porting tool is not
perfect, but it’s a start and we hope to develop it more in the future.

When porting a file, say foo.c, you’ll first need to copy the file to
foo.cyc and then edit it to add __cyclone_port_on__; and __cyclone_-
port_off__; around the code that you want Cyclone to port. For exam-
ple, if after copying foo.c, the file foo.cyc contains the following:

1. #include <stdio.h>
2.
3. void foo(char *s) {
4. printf(s);
5. }
6.
7. int main(int argc, char **argv) {
8. argv++;
9. for (argc--; argc >= 0; argc--, argv++)
10. foo(*argv);
11. }

then you’ll want to insert __cyclone_port_on__; at line 2 and __-
cyclone_port_off__; after line 11. You do not want to port standard
include files such as stdio, hence the need for the delimiters.

Next compile the file with the -port flag:
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cyclone -port foo.cyc > rewrites.txt

and pipe the output to a file, in this case rewrites.txt. If you edit the
output file, you will see that the compiler has emitted a list of edits such
as the following:

foo.cyc(5:14-5:15): insert ‘?’ for ‘*’
foo.cyc(9:24-9:25): insert ‘?’ for ‘*’
foo.cyc(9:25-9:26): insert ‘?’ for ‘*’

You can apply these edits by running the rewrite program on the edits:

rewrite -port foo.cyc > rewrites.txt

(The rewrite program is written in Cyclone and included in the tools
sub-directory.) This will produce a new file called foo_new.cyc which
should look like this:

#include <stdio.h>

__cyclone_port_on__;

void foo(char ?s) {
printf(s);

}

int main(int argc, char ??argv) {
argv++;
for (argc--; argc >= 0; argc--, argv++)

foo(*argv);
}
__cyclone_port_off__;

Notice that the porting system has changed the pointers from thin pointers
to fat pointers (?) to support the pointer arithmetic that is done in main,
and that this constraint has flowed to procedures that are called (e.g., foo).

You’ll need to strip out the port-on and port-off directives and then try
to compile the file with the Cyclone compiler. In this case, the rewritten
code in foo_new.cyc compiles with a warning that main might not re-
turn an integer value. In general, you’ll find that the porting tool doesn’t
always produce valid Cyclone code. Usually, you’ll have to go in and
modify the code substantially to get it to compile. Nonetheless, the port-
ing tool can take care of lots of little details for you.
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A.2 Manually Translating C to Cyclone

To a first approximation, you can port a simple program from C to Cyclone
by following these steps which are detailed below:

• Change pointer types to fat pointer types where necessary.

• Use comprehensions to heap-allocate arrays.

• Use tagged unions for unions with pointers.

• Initialize variables.

• Put breaks or fallthrus in switch cases.

• Replace one temporary with multiple temporaries.

• Connect argument and result pointers with the same region.

• Insert type information to direct the type-checker.

• Copy “const” code or values to make it non-const.

• Get rid of calls to free, calloc, etc.

• Use polymorphism or tagged unions to get rid of void*.

• Rewrite the bodies of vararg functions.

• Use exceptions instead of setjmp.

Even when you follow these suggestions, you’ll still need to test and
debug your code carefully. By far, the most common run-time errors you
will get are uncaught exceptions for null-pointer dereference or array out-
of-bounds. Under Linux, you should get a stack backtrace when you have
an uncaught exception which will help narrow down where and why the
exception occurred. On other architectures, you can use gdb to find the
problem. The most effective way to do this is to set a breakpoint on the
routines _throw_null() and _throw_arraybounds() which are de-
fined in the runtime and used whenever a null-check or array-bounds-
check fails. Then you can use gdb’s backtrace facility to see where the
problem occurred. Of course, you’ll be debugging at the C level, so you’ll
want to use the -save-c and -g options when compiling your code.
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Change pointer types to fat pointer types where necessary. Ideally, you should
examine the code and use thin pointers (e.g., int* or better int*@notnull)
wherever possible as these require fewer run-time checks and less
storage. However, recall that thin pointers do not support pointer
arithmetic. In those situations, you’ll need to use fat pointers (e.g.,
int*@fat which can also be written as int?). A particularly sim-
ple strategy when porting C code is to just change all pointers to
fat pointers. The code is then more likely to compile, but will have
greater overhead. After changing to use all fat pointers, you may
wish to profile or reexamine your code and figure out where you can
profitably use thin pointers.

Be careful with char pointers. By default, a char ? is treated as
zero-terminated, i.e. a char * @fat @zeroterm. If you are using
the char pointer as a buffer of bytes, then you may actually wish
to change it to be a char ? @nozeroterm instead. Along these
lines, you have to be careful that when you are using arrays that get
promoted to pointers, that you correctly indicate the size of the array
to account for the zero terminator. For example, say your original C
code was

char line[MAXLINELEN];
while (fgets(line, MAXLINELEN, stdin)) ...

If you want your pointer to be zero-terminated, you would have to
do the following:

char line[MAXLINELEN+1] @zeroterm;
while (fgets(line, MAXLINELEN, stdin)) ...

The @zeroterm qualifier is needed since char arrays are not zero-
terminated by default. Adding the +1 makes space for the extra zero
terminator that Cyclone includes, ensuring that it won’t be overwrit-
ten by fgets. If you don’t do this, you could well get an array
bounds exception at runtime. If you don’t want your char array
to be zero-terminated, you can simply leave the original C code as is.

Use comprehensions to heap-allocate arrays. Cyclone provides limited sup-
port for malloc and separated initialization but this really only works
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for bits-only objects. To heap- or region-allocate and initialize an ar-
ray that might contain pointers, use new or rnew in conjunction with
array comprehensions. For example, to copy a vector of integers s,
one might write:

int *@fat t = new {for i < numelts(s) : s[i]};

Use tagged unions for unions with pointers. Cyclone only lets you read
members of unions that contain “bits” (i.e., ints; chars; shorts; floats;
doubles; or tuples, structs, unions, or arrays of bits.) So if you have a
C union with a pointer type in it, you’ll have to code around it. One
way is to simply use a @tagged union. Note that this adds hidden
tag and associated checks to ensure safety.

Initialize variables. Top-level variables must be initialized in Cyclone,
and in many situations, local variables must be initialized. Some-
times, this will force you to change the type of the variable so that
you can construct an appropriate initial value. For instance, suppose
you have the following declarations at top-level:

struct DICT;
struct DICT *@notnull new_dict();
struct DICT *@notnull d;
void init() {

d = new_dict();
}

Here, we have an abstract type for dictionaries (struct Dict), a
constructor function (new_dict()) which returns a pointer to a new
dictionary, and a top-level variable (d) which is meant to hold a
pointer to a dictionary. The init function ensures that d is initial-
ized. However, Cyclone would complain that d is not initialized be-
cause init may not be called, or it may only be called after d is
already used. Furthermore, the only way to initialize d is to call the
constructor, and such an expression is not a valid top-level initial-
izer. The solution is to declare d as a “possibly-null” pointer to a
dictionary and initialize it with NULL:
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struct DICT;
struct DICT *nonnull new_dict();
struct DICT *d;
void init() {

d = new_dict();
}

Of course, now whenever you use d, either you or the compiler will
have to check that it is not NULL.

Put breaks or fallthrus in switch cases. Cyclone requires that you either
break, return, continue, throw an exception, or explicitly fallthru in
each case of a switch.

Replace one temporary with multiple temporaries. Consider the follow-
ing code:

void foo(char * x, char * y) {
char * temp;
temp = x;
bar(temp);
temp = y;
bar(temp);

}

When compiled, Cyclone generates an error message like this:

type mismatch: char *@zeroterm #0 != char *@zeroterm #1

The problem is that Cyclone thinks that x and y might point into
different regions (which it named #0 and #1 respectively), and the
variable temp is assigned both the value of x and the value of y.
Thus, there is no single region that we can say temp points into. The
solution in this case is to use two different temporaries for the two
different purposes:

void foo(char * x, char * y) {
char * temp1;
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char * temp2;
temp1 = x;
bar(temp1);
temp2 = y;
bar(temp2);

}

Now Cyclone can figure out that temp1 is a pointer into the region
#0 whereas temp2 is a pointer into region #1.

Connect argument and result pointers with the same region. Remember
that Cyclone assumes that pointer inputs to a function might point
into distinct regions, and that output pointers, by default point into
the heap. Obviously, this won’t always be the case. Consider the
following code:

int *foo(int *x, int *y, int b) {
if (b)

return x;
else

return y;
}

Cyclone complains when we compile this code:

foo.cyc:3: returns value of type int *‘GR0 but requires int *
‘GR0 and ‘H are not compatible.

foo.cyc:5: returns value of type int *‘GR1 but requires int *
‘GR1 and ‘H are not compatible.

The problem is that neither x nor y is a pointer into the heap. You
can fix this problem by putting in explicit regions to connect the ar-
guments and the result. For instance, we might write:

int *‘r foo(int *‘r x, int *‘r y, int b) {
if (b)

return x;
else

return y;
}
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and then the code will compile. Of course, any caller to this function
must now ensure that the arguments are in the same region.

Insert type information to direct the type-checker. Cyclone is usually good
about inferring types. But sometimes, it has too many options and
picks the wrong type. A good example is the following:

void foo(int b) {
printf("b is %s", b ? "true" : "false");

}

When compiled, Cyclone warns:

(2:39-2:40): implicit cast to shorter array

The problem is that the string "true" is assigned the type const
char ?{5} whereas the string "false" is assigned the type const
char ?{6}. (Remember that string constants have an implicit 0 at
the end.) The type-checker needs to find a single type for both since
we don’t know whether b will come out true or false and conditional
expressions require the same type for either case. There are at least
two ways that the types of the strings can be promoted to a uni-
fying type. One way is to promote both to char? which would
be ideal. Unfortunately, Cyclone has chosen another way, and pro-
moted the longer string ("false") to a shorter string type, namely
const char ?{5}. This makes the two types the same, but is not
at all what we want, for when the procedure is called with false, the
routine will print

b is fals

Fortunately, the warning indicates that there might be a problem.
The solution in this case is to explicitly cast at least one of the two
values to const char ?:

void foo(int b) {
printf("b is %s", b ? ((const char ?)"true") : "false");

}
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Alternatively, you can declare a temp with the right type and use it:

void foo(int b) {
const char ? t = b ? "true" : "false"
printf("b is %s", t);

}

The point is that by giving Cyclone more type information, you can
get it to do the right sorts of promotions. Other sorts of type infor-
mation you might provide include region annotations (as outlined
above), pointer qualifiers, and casts.

Copy “const” code or values to make it non-const. Cyclone takes const
seriously. C does not. Occasionally, this will bite you, but more of-
ten than not, it will save you from a core dump. For instance, the
following code will seg fault on most machines:

void foo() {
char ?x = "howdy"
x[0] = ’a’;

}

The problem is that the string "howdy" will be placed in the read-
only text segment, and thus trying to write to it will cause a fault.
Fortunately, Cyclone complains that you’re trying to initialize a non-
const variable with a const value so this problem doesn’t occur in
Cyclone. If you really want to initialize x with this value, then you’ll
need to copy the string, say using the dup function from the string
library:

void foo() {
char ?x = strdup("howdy");
x[0] = ’a’;

}

Now consider the following call to the strtoul code in the standard
library:
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extern unsigned long strtoul(const char ?‘r n,
const char ?‘r*‘r2 endptr,
int base);

unsigned long foo() {
char ?x = strdup("howdy");
char ?*e = NULL;
return strtoul(x,e,0);

}

Here, the problem is that we’re passing non-const values to the li-
brary function, even though it demands const values. Usually, that’s
okay, as const char ? is a super-type of char ?. But in this case,
we’re passing as the endptr a pointer to a char ?, and it is not
the case that const char ?* is a super-type of char ?*. In this
case, you have two options: Either make x and e const, or copy the
code for strtoul and make a version that doesn’t have const in the
prototype.

Get rid of calls to free, calloc etc. There are many standard functions that
Cyclone can’t support and still maintain type-safety. An obvious one
is free() which releases memory. Let the garbage collector free the
object for you, or use region-allocation if you’re scared of the collec-
tor. Other operations, such as memset, memcpy, and realloc are
supported, but in a limited fashion in order to preserve type safety.

Use polymorphism or tagged unions to get rid of void*. Often you’ll find
C code that uses void* to simulate polymorphism. A typical exam-
ple is something like swap:

void swap(void **x, void **y) {
void *t = x;
x = y;
y = t;

}

In Cyclone, this code should type-check but you won’t be able to use
it in many cases. The reason is that while void* is a super-type of
just about any pointer type, it’s not the case that void** is a super-
type of a pointer to a pointer type. In this case, the solution is to use
Cyclone’s polymorphism:
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void swap(‘a *x, ‘a *y) {
‘a t = x;
x = y;
y = t;

}

Now the code can (safely) be called with any two (compatible) pointer
types. This trick works well as long as you only need to “cast up”
from a fixed type to an abstract one. It doesn’t work when you need
to “cast down” again. For example, consider the following:

int foo(int x, void *y) {
if (x)
return *((int *)y);
else {

printf("%s\n",(char *)y);
return -1;

}
}

The coder intends for y to either be an int pointer or a string, de-
pending upon the value of x. If x is true, then y is supposed to be
an int pointer, and otherwise, it’s supposed to be a string. In either
case, you have to put in a cast from void* to the appropriate type,
and obviously, there’s nothing preventing someone from passing in
bogus cominations of x and y. The solution in Cylcone is to use a
tagged union to represent the dependency and get rid of the variable
x:

@tagged union IntOrString {
int Int;
const char *@fat String;

};
typedef union IntOrString i_or_s;
int foo(i_or_s y) {

switch (y) {
case {.Int = i}: return i;
case {.String = s}:
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printf("%s\n",s);
return -1;

}
}

Rewrite the bodies of vararg functions. See the section on varargs for more
details.

Use exceptions instead of setjmp. Many uses of setjmp/longjmp can
be replaced with a try-block and a throw. Of course, you can’t do
this for things like a user-level threads package, but rather, only for
those situations where you’re trying to “pop-out” of a deeply nested
set of function calls.

A.3 Interfacing to C

When porting any large code from C to Cyclone, or even when writing
a Cyclone program from scratch, you’ll want to be able to access legacy
libraries. To do so, you must understand how Cyclone represents data
structures, how it compiles certain features, and how to write wrappers to
make up for representation mismatches.

A.3.1 Extern “C”

Sometimes, interfacing to C code is as simple as writing an appropriate
interface. For instance, if you want to call the acos function which is
defined in the C Math library, you can simply write the following:

extern "C" double acos(double);

The extern "C" scope declares that the function is defined externally
by C code. As such, it’s name is not prefixed with any namespace infor-
mation by the compiler. Note that you can still embed the function within
a Cyclone namespace, it’s just that the namespace is ignored by the time
you get down to C code. If you have a whole group of functions then you
can wrap them with a single extern "C" { ... }, as in:

extern "C" {
double acos(double);
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float acosf(float);
double acosh(double);
float acoshf(float);
double asin(double);

}

You must be careful that the type you declare for the C function is its real
type. Misdeclaring the type could result in a runtime error. Note that you
can add Cyclonisms to the type that refine the meaning of the original C.
For example, you could declare:

extern "C" int strlen(const char * @notnull str);

Here we have refined the type of strlen to require that a non-NULL
pointer is passed to it. Because this type is representation-compatible with
the C type (that is, it has the same storage requirements and semantics),
this is legal. However, the following would be incorrect:

extern "C" int strlen(const char * @fat str);

Giving the function this type would probably lead to an error because
Cyclone fat pointers are represented as three words, but the standard C
library function expects a single pointer (one word).

The extern "C" approach works well enough that it covers many of
the cases that you’ll encounter. However, the situation is not so when you
run into more complicated interfaces. Sometimes you will need to write
some wrapper code to convert from Cyclone’s representations to C’s and
back (so called wrapper code).

A.3.2 Extern “C include”

Another useful tool is the extern "C include" mechanism. It allows
you to write C definitions within a Cyclone file. Here is a simple example:

extern "C include" {
char peek(unsigned int i) {

return *((char *)i);
}

void poke(unsigned int i, char c) {
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*((char *)i) = c;
}

} export {
peek, poke;

}

In this example, we’ve defined two C functions peek and poke. Cyclone
will not compile or type-check their code, but rather pass them on to the C
compiler. The export clause indicates which function and variable def-
initions should be exported to the Cyclone code. If we only wanted to
export the peek function, then we would leave the poke function out of
the export list. All all other definitions, like typedefs, structs, etc., not
to mention #defines and other preprocessor effects, are exported by de-
fault (but this may change in a later release).

Any top-level types you mention in the extern "C include" are
interpreted by the Cyclone code that uses them as Cyclone types. If they
are actually C types (as would be the case if you #included some header
in the C block), this will be safe, but possibly undesirable, since they may
not communicate the right information to the Cyclone code. There are
two ways around this. In many cases, you can actually declare Cyclone
types within the C code, and they will be treated as such. For example, in
lib/core.cyc, we have For example, you could do something like:

extern "C include" {
... Cyc_Core_mkthin(‘a ?‘r dyn, sizeof_t<‘a> sz) {

unsigned bd = _get_dyneither_size(dyn,sz);
return Cyc_Core_mktuple(dyn.curr,bd);

}
} export {

Cyc_Core_mkthin
}

In this case, we are able to include a ? notation directly in the C type, but
then manipulate it using the runtime system functions for fat pointers (see
cyc_include.h for details).

In the case that you are #includeing a C header file, you may not be
able to change its definitions to have a proper Cyclone type, or it may be
that the Cyclone definitions will not parse for some reason. In this case,
you can declare a block to override the definitions with Cyclone compatible
versions. For example, we could change the above code to be instead:
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extern "C include" {
struct foo { int x; int y; };
struct foo *cast_charbuf(char *buf, unsigned int n) {

if (n >= sizeof(struct foo))
return (struct foo *)buf;

else
return (void *)0;

}
} cyclone_override {

struct foo *cast_charbuf
(char * @numelts(valueof(‘n)) @nozeroterm buf,tag_t<‘n> n);

} export {
cast_charbuf

}

Now we have given cast_charbuf its original C type, but then provided
the Cyclone type in the override block. The Cyclone type ensures the value
of n correctly represents the length of the buffer, by using Cyclone’s de-
pendent types (see Section 3). Note that top-level struct and other type
definitions can basically be entirely Cyclone syntax. If you try to declare
a Cyclone overriding type that is representation-incompatible with the C
version, the compiler will complain.

Here is a another example using an external header:

extern "C include" { /* tell Cyclone that <pcre.h> is C code */
#include <pcre/pcre.h>
} cyclone_override {

pcre *\U pcre_compile(const char @pattern, int options,
const char *‘H *errptr, int *erroffset,
const unsigned char *tableptr);

int pcre_exec(const pcre @code, const pcre_extra *extra,
const char *subject, int length,
int startoffset, int options,
int *ovector, int ovecsize);

} export { pcre_compile, pcre_exec; }

In this case, we have included the Perl regular expression library C header,
and then exported two of its functions, pcre_compile and pcre_exec.
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Moreover, we have given these functions Cyclone types that are more ex-
pressive in the original C. Probably we would yet want to write wrap-
pers around these functions to check other invariants of the arguments
(e.g., that the length passed to pcre_exec is indeed the length of the
subject). Take a look at tests/pcredemo.cyc for more information
on this example. Another example that shows how you can override
things is in tests/cinclude.cyc.

The goal of this example is to show how you can safely suck in a large C
interface (in this case, the Perl Compatible Regular Expression interface),
write wrappers around some of the functions to convert represenations
and check properties, and then safely export these wrappers to Cyclone.

One word of warning: when you #include something within an extern
"C include", it will follow the normal include path, which is to say that
it will look for Cyclone versions of the headers first. This means that if you
do something like:

extern "C include" {
#include <string.h>
} export { ... }

It will actually include the Cyclone version of the string.h header! These
easiest way around this is to use an absolute path, as in

extern "C include" {
#include "/usr/include/string.h"
} export { ... }

Even worse is when a C header you wish to include itself includes a header
for which there exists a Cyclone version. In the pcre.h example above,
this actually occurs in that pcre.h includes stdlib.h, and gets the Cy-
clone version. To avoid this, the pcredemo.cyc program includes the Cy-
clone versions of these headers first. Ultimately we will probably change
the compiler so that header processing within extern "C include"
searches the C header path but not the Cyclone one.

B Frequently Asked Questions

What does $(type1,type2) mean? What does $(expr1, expr2) mean? Cyclone
has tuples, which are anonymous structs with fields numbered 0, 1,
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2, . . . . For example, $(int,string_t) is a pair of an int and a
string_t. An example value of this type is $(4,"cyclone"). To
extract a field from a tuple, you use array-like notation: you write
x[0], not x.0.

What does int @ mean? In Cyclone @ is a pointer that is guaranteed not
to be NULL. The Cyclone compiler guarantees this through static or
dynamic checks. For example,

int *x = NULL;

is not an error, but

int @x = NULL;

is an error. Note that “int @” is shorthand for the more verbose
“int *@notnull”.

What does int *{37} mean? This is the type of (possibly-null) point-
ers to a sequence of at least 37 integers, which can also be written
as “int *@numelts(37)”. The extra length information is used
by Cyclone to prevent buffer overflows. For example, Cyclone will
compile x[expr] into code that will evaluate expr, and check that
the result is less than 37 before accessing the element. Note that int
* is just shorthand for int *{1}. Currently, the expression in the
braces must be a compile-time constant.

What does int *‘r mean? This is the type of a pointer to an int in re-
gion ‘r. This can also be written as “int *@region(‘r)”. A
region indicates conceptually where in memory an object is stored;
different regions have different lifetimes and deallocation strategies,
and the aliasing into certain regions may be restricted. Cyclone uses
this region information to prevent dereferencing a pointer whose
storage has been deallocated. See Section 8 for more information
on regions.

What does ‘H mean? This is Cyclone’s heap region: objects in this region
cannot be explicitly freed, only garbage-collected. Effectively, this
means that pointers into the heap region can always be safely deref-
erenced.
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What does int @{37}‘r mean? A pointer can come with all or none of
the nullity, bound, and region annotation. This type is the type of
non-null pointers to at least 37 consecutive integers in region ‘r.
When the bound is omitted it default to 1.

What is a pointer type’s region when it’s omitted? Every pointer type has
a region; if you omit it, the compiler chooses a region name you im-
plicitly. The name chosen depends on where the pointer type occurs.
In function arguments, a fresh region variable is used. In function re-
sults and type definitions (including typedef), the heap region (‘H)
is used. In function bodies, the compiler looks at the uses (using uni-
fication) to try to determine a region. See Section 2.3 and Section 8
for more information.

What does int ? mean? The ? a special kind of pointer that carries along
bounds information. It is a “questionable” pointer: it might be NULL
or pointing out of bounds. An int ? is a pointer to an integer,
along with some information that allows Cyclone to check whether
the pointer is in bounds at run-time. These are the only kinds of
pointers that you can use for pointer arithmetic in Cyclone.

What does ‘a mean? ‘a is a type variable. Type variables are typically
used in polymorphic functions. For example, if a function takes a
parameter of type ‘a, then the function can be called with a value
of any suitable type. If there are two arguments of type ‘a, then any
call will have to give values of the same type for those parameters.
And if the function returns a type ‘a, then it must return a result of
the same type as the the argument. Syntactically, a type variable is
any identifier beginning with ‘ (backquote).

What is a “suitable” type for a type variable? The last question said that
a type variable can stand for a “suitable” type. Unfortunately, not
all types are “suitable.” Briefly, the “suitable” types are those that
fit into a general-purpose machine register, typically including int,
and pointers. Non-suitable types include float, struct types (which
can be of arbitrary size), tuples, and questionable pointers. Techni-
cally, the suitable types are the types of “box kind,” described below.
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How do I cast from void *? You can’t do this in Cyclone. A void * in
C really does not point to void, it points to a value of some type.
However, when you cast from a void * in C, there is no guarantee
that the pointer actually points to a value of the expected type. This
can lead to crashes, so Cyclone doesn’t permit it. Cyclone’s polymor-
phism and tagged unions can often be used in places where C needs
to use void *, and they are safe. Note that you can generally cast
to a void * in Cyclone, you just won’t be able to cast back.

What does _ (underscore) mean in types? Underscore is a “wildcard” type.
It stands for some type that the programmer doesn’t want to bother
writing out; the compiler is expected to fill in the type for the pro-
grammer. Sometimes, the compiler isn’t smart enough to figure out
the type (you will get an error message if so), but usually there is
enough contextual information for the compiler to succeed. For ex-
ample, if you write

_ x = new Pair(3,4);

the compiler can easily infer that the wildcard stands for struct
Pair @. In fact, if x is later assigned NULL, the compiler will infer
that x has type struct Pair * instead.

Note that only in restricted cases is _ allowed as part of top-level
declarations.

What do ‘a::B, ‘a::M, ‘a::A, ‘a::R, ‘a::Q and ‘a::E mean? Types
are divided into different groups, which we call kinds. There are six
kinds: B (for Box), M (for Memory), A (for Any), E (for Effect), R (for
Region), and Q (for alias-Qualifier). The notation typevar::kind says
that a type variable belongs to a kind. A type variable can only be
instantiated by types that belong to its kind.

Box types include int, long, region_t, tag_t, enums, and non-
@fat pointers. Memory types include all box types, void, char,
short, long long, float, double, arrays, tuples, datatype and
@extensible datatype variants, @fat pointers, and non-abstract
structs and unions. Any types include all types that don’t have kind
R, E or Q. For the region types, R indicates regions like the heap,
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stack, and dynamic regions; Q indicates alias qualifiers like ALIASABLE,
UNIQUE, REFCNT or RESTRICTED; Effect types are sets of regions
(these are explained elsewhere).

What does it mean when type variables don’t have explicit kinds? Every
type variable has a kind, but usually the programmer doesn’t have
to write it down. In function prototypes, the compiler will infer the
most permissive kind. For example,

void f(‘a *‘b x, ‘c * y, ‘a z);

is shorthand for

void f(‘a::B *‘b::R x, ‘c::M * y, ‘a::B z)

In type definitions, no inference is performed: an omitted kind is
shorthand for ::B. For example,

struct S<‘a,‘r::R> { ‘a *‘r x; };

is shorthand for

struct S<‘a::B,‘r::R> { ‘a *‘r x;};

but

struct S<‘a,‘r>{‘a *‘r x;};

is not.

What does struct List<‘a,‘r::R> mean? struct List takes a type
of box kind and a region and produces a type. For example, struct
List<int, ‘H> is a type, and struct List<struct List<int,‘H>@,
‘H> is a type. struct List<‘a,‘r::R> is a list whose elements
all have type ‘a and live in region ‘r.
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What is a @tagged union? In C, when a value has a union type, you
know that in fact it has one of the types of the union’s fields, but there
is no guarantee which one. This can lead to crashes in C. Cyclone’s
@tagged unions are like C unions with some additional information
(a tag) that lets the Cyclone compiler determine what type the un-
derlying value actually has, thus helping to ensure safety.

What is abstract? abstract is a storage-class specifier, like static
or extern. When attached to a top-level type declaration, it means
that other files can use the type but cannot look at the internals of
the type (e.g., other files cannot access the fields of an abstract struct).
Otherwise, abstract has the same meaning as the auto (default) stor-
age class. Hence abstract is a way to state within a Cyclone file
that a type’s representation cannot be exported.

What are the Cyclone keywords? In addition to the C keywords, the fol-
lowing have special meaning and cannot be used as identifiers: abstract,
catch, datatype, fallthru, let, malloc, namespace, new, NULL,
region_t, regions, rmalloc, rnew, throw, try, using. As in
gcc, __attribute__ is reserved as well.

What are namespace and using? These constructs provide a convenient
way to help avoid name clashes. namespace X prepends X:: to the
declarations in its body (rest of file in case of namespace X;) and us-
ing X makes the identifiers prepended with X:: available without
having to write the X::.

What is fallthru? In Cyclone, you cannot implicitly fall through from
one switch case to the next (a common source of bugs in C). Instead,
you must explicitly fall through with a fallthru statement. So, to
port C code, place fallthru; at the end of each case that implicitly
falls through; note that fallthru may not appear in the last case of
a switch.

fallthru is useful for more than just catching bugs. For instance,
it can appear anywhere in a case; its meaning is to immediately goto
the next case. Second, when the next case of the switch has pattern
variables, a fallthru can (and must) be used to specify expres-
sions that will be bound to those variables in the next case. Hence
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fallthru is more powerful (but more verbose) than “or patterns”
in ML.

What is new? new expr allocates space in the heap region, initializes it
with the result of evaluating expr, and returns a pointer to the space.
It is roughly equivalent to

type @temp = malloc(sizeof(type));

*temp = expr;

where type is the type of expr. You can also write

new { for i < expr1 : expr2 }

to heap-allocate an array of size expr1 with the ith element initialized
to expr2 (which may mention i).

How do I use tuples? A tuple type is written $(type0, ..., typen).
A value of the type is constructed by $(expr0, ..., exprn), where
expri has type typei. If expr has type $(type0, ..., typen), you
can extract the component i using expr[i]. The expression in the
brackets must be a compile-time constant. In short, tuples are like
anonymous structs where you use expr[i] to extract fields instead
of expr.i. There is no analogue of the -> syntax that can be used
with pointers of structs; if expr has type $(type1, ..., typen)

*, you can extract component i by (*expr)[i].

What is {for i < expr1 : expr2}? This is an array initializer. It can
appear where array initializers appear in C, and it can appear as the
argument to new. It declares an identifier (in this case, i) whose
scope is expr2. expr1 is an expression which is evaluated to an un-
signed integer giving the desired size of the array. The expression
expr2 is evaluated expr1 times, with i ranging over 0, 1, ..., expr1-1;
the result of each evaluation initializes the ith element of the array.

The form new {for i < expr1 : expr2} allocates space for a new
array and initializes it as just described. This form is the only way
to create arrays whose size depends on run-time information. When
{for i < expr1 : expr2} is not an argument to new, expr1 must
be constant and expr2 may not mention i. This restriction includes
all uses at top-level (for global variables).
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How do I throw and catch exceptions? A new exception is declared as in

datatype exn { MyExn };

The exception can be thrown with the statement

throw MyExn;

You can catch the expression with a try/catch statement:

try statement1 catch { case MyExn: statement2 }

If statement1 throws an MyExn and no inner catch handles it, control
transfers to statement2.

The catch body can have any number of case clauses. If none
match, the exception is re-thrown.

Exceptions can carry values with them. For example, here’s how to
declare an exception that carries an integer:

datatype exn { MyIntExn(int) };

Values of such exceptions must be heap-allocated. For example, you
can create and throw a MyIntExn exception with

throw new MyIntExn(42);

To catch such an exception you must use an &-pattern:

try statement1
catch {

case &MyIntExn(x): statement2
}

When the exception is caught, the integer value is bound to x.

The exn type is just a pre-defined @extensible datatype type.
Therefore, all the standard rules for extending, creating objects, and
destructing objects of a datatype apply.
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How efficient is exception handling? Entering a try block is implemented
using setjmp. Throwing an exception is implemented with longjmp.
Pattern-matching a datatype against each case variant in the catch
clause is a pointer-comparsion. In short, exception handling is fairly
lightweight.

What does let mean? In Cyclone, let is used to declare variables. For
example,

let x,y,z;

declares the three variables x, y, and z. The types of the variables
do not need to be filled in by the programmer, they are filled in by
the compiler’s type inference algorithm. The let declaration above
is equivalent to

_ x;
_ y;
_ z;

There is a second kind of let declaration, with form

let pattern = expr;

It evaluates expr and matches it against pattern, initializing the pat-
tern variables of pattern with values drawn from expr. For example,

let x = 3;

declares a new variable x and initializes it to 3, and

let $(y,z) = $(3,4);

declares new variables y and z, and initializes y to 3 and z to 4.

What is a pattern and how do I use it? Cyclone’s patterns are a convenient
way to destructure aggregate objects, such as structs and tuples. They
are also the only way to destructure datatypes. Patterns are used
in Cyclone’s let declarations, switch statements, and try/catch
statements.
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What does _ mean in a pattern? It is a wildcard pattern, matching any
value. For example, if f is a function that returns a pair, then

let $(_,y) = f(5);

is a way to extract the second element of the pair and bind it to a new
variable y.

What does it mean when a function has an argument with type ‘a? Any
type that looks like ‘ (backquote) followed (without whitespace) by
an identifier is a type variable. If a function parameter has a type
variable for its type, it means the function can be called with any
pointer or with an int. However, if two parameters have the same
type variable, they must be instantiated with the same type. If all oc-
currences of ‘a appear directly under pointers (e.g., ‘a *), then an
actual parameter can have any type, but the restrictions about using
the same type still apply. This is called parametric polymorphism, and
it’s used in Cyclone as a safe alternative to casts and void *.

Do functions with type variables get duplicated like C++ template functions?Is there run-time overhead for using type variables?
No and no. Each Cyclone function gives rise to one function in the
output, and types are not present at run-time. When a function is
called, it does not need to know the types with which the caller is
instantiating the type variables, so no instantiation actually occurs—
the types are not present at run-time. We do not have to duplicate the
code because we either know the size of the type or the size does not
matter. This is why we don’t allow type variables of memory kind
as parameters—doing so would require code duplication or run-time
types.

Can I use varargs? Yes, Cyclone has a way of supporting variable-argument
functions. It is not quite the same as C’s, but it is safe. For instance,
we have written type-safe versions of printf and scanf all within Cy-
clone. See the documentation on varargs for more information.

Why can’t I declare types within functions? We just haven’t implemented
this support yet. For now, you need to hoist type declarations and
typedefs to the top-level.
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What casts are allowed? Cyclone doesn’t support all of the casts that C
does, because incorrect casts can lead to crashes. Instead, Cyclone
supports a safe subset of C’s casts. Here are some examples.

All of C’s numeric casts, conversions, and promotions are unchanged.

You can always cast between type@{const-expr}, type*{const-expr},
and type?. A cast from type? to one of the other types includes a run-
time check that the pointer points to a sequence of at least const-expr
objects. A cast to type@{const-expr}from one of the other types in-
cludes a run-time check that the pointer is not NULL. No other casts
between these type have run-time checks. A failed run-time check
throws Null_Exception. A pointer into the heap can be cast to a
pointer into another region. A pointer to a struct or tuple can
be cast to a pointer to another struct or tuple provided the “tar-
get type” is narrower (it has fewer fields after “flattening out” nested
structs and tuples) and each (flattened out) field of the target
type could be the target of a cast from the corresponding field of
the source type. A pointer can be cast to int. The type type*{const-
expr1}can be cast to type*{const-expr2}provided const-expr2 < const-expr1,
and similarly for type@{const-expr1}and type@{const-expr2}.

An object of type datatype T.A @ can be cast to datatype T @.
The current implementation isn’t quite as lenient as it should be. For
example, it rejects a cast from int *{4} to $(int,int)*{2}, but
this cast is safe.

For all non-pointer-containing types type, you can cast from a type
? to a char ?. This allows you to make frequent use of memcpy,
memset, etc.

Why can’t I implicitly fall-through to the next switch case? We wanted
to add an explicit fallthru construct in conjunction with pattern
matching, and we decided to enforce use of fallthru in all cases
because this is a constant source of bugs in C code.

Do I have to initialize global variables? You currently must provide ex-
plicit initializers for global variables that may contain pointers, so
that the compiler can be sure that uninitialized memory containing
pointers is not read. In the future, we expect to provide some sup-
port for initializing globals in constructor functions.
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Two techniques help with initializing global arrays. First, if an ar-
ray element could be 0 or NULL, the compiler will insert 0 for any
elements you do not specify. For example, you can write

int x[37];

to declare a global array x initialized with 37 elements, all 0. Second,
you can use the comprehension form

int x[37] = { for i < expr1 : expr2 }

provided that expr1 and expr2 and constant expressions. Currently,
expr2 may not use the variable i, but in the future it will be able
to. Note that it is not possible to have a global variable of an abstract
type because it is impossible to know any constant expression of that
type.

Are there threads? Cyclone does not yet have a threads library and some
of the libraries are not re-entrant. In addition, because Cyclone uses
unboxed structs of three words to represent fat pointers, and updat-
ing them is not an atomic operation, it’s possible to introduce un-
soundnesses by adding concurrent threads. However, in the future,
we plan to provide support for threads and a static analysis for pre-
venting these and other forms of data races.

Can I use setjmp and longjmp? No. However, Cyclone has exceptions,
which can be used for non-local control flow. The problem with
setjmp and longjmp is that safety demands we prohibit a longjmp
to a place no longer on the stack. A future release may have more
support for non-local control flow.

What types are allowed for union members? Currently, unionmembers
can be just about any type, other than those with kind (A) (see ques-
tion on kinds, above). Examples include numeric types (including
bit fields and enumerations), structs and tuples of allowable union-
member types, and other unions. However, if a union contains a
pointer type, you can only write the pointer, not read it. This pre-
vents effectively casting an int to a pointer by writing an int mem-
ber and then reading the pointer, for example. To use pointers as
normal within a union, you must use @tagged unions.
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Why can’t I do anything with values of type void *? Because we cannot
know the size of an object pointed to by a pointer of type void *, we
prohibit derefencing the pointer or casting it to a different pointer
type. To write code that works for all pointer types, use type vari-
ables and polymorphism. Tagged unions can also substitute in some
cases where void * is used in C.

What is aprintf? The aprintf function is just like printf, but the
output is placed in a new string allocated on the heap. Note that you
can use the more general function rprintf to allocate the output in
a region of your choosing.

How do I access command-line arguments? The type of main should be

int main(int argc, char ?? argv);

As in C, argc is the number of command-line arguments and argv[i]
is a string with the ith argument. Unlike C, argv and each element
of argv carry bounds information. Note that argc is redundant—it
is always equal to numelts(argv).

Why can’t I pass a stack pointer to certain functions? If the type of a func-
tion parameter is a pointer into the heap region, it cannot be passed a
stack parameter. Pointer types in typedef and struct definitions refer
to the heap region unless there is an explicit region annotation.

Why do I get an incomprehensible error when I assign a local’s address to a pointer variable?
If the pointer variable has a type indicating that it points into the
heap, then the assignment is illegal. Try initializing the pointer vari-
able with the local’s address, rather than delaying the assignment
until later.

How much pointer arithmetic can I do? On fat pointers, you can add or
subtract an int (including via increment/decrement), as in C. It is
okay for the result to be outside the bounds of the object pointed
to; it is a run-time error to dereference outside of the bounds. (The
compiler inserts bounds information and a run-time check; an excep-
tion is thrown if the check fails.) You can also do pointer arithmetic
on zero-terminated pointers. Currently, we do not support pointer
arithmetic on the other pointer types. As in C, you can subtract two
pointers of the same type; the type of the result is unsigned int.
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What is the type of a literal string? The type of the string constant "foo"
is char @{4} (remember the trailing null character). However, there
are implicit casts from char @{4} to char @{2}, char *{4}, and
char ?, so you shouldn’t have to think too much about this.

Are strings NUL-terminated? Cyclone follows C’s lead on this. String lit-
erals like "foo" are NUL-terminated. Many of the library functions
consider a NUL character to mark the end of a string. And library
functions that return strings often ensure that they are NUL termi-
nated. However, there is no guarantee that a string is NUL termi-
nated. For one thing, as in C, the terminating NUL may be overwrit-
ten by any character. In C this can be exploited to cause buffer over-
flows. To avoid this in Cyclone, strings generally have type char
?, that is, they carry bounds information. In Cyclone a string ends
when a NUL character is found, or when the bounds are exceeded.

How do I use malloc? malloc is a Cyclone primitive, not a library func-
tion. Currently it has an extremely restricted syntax: You must write
malloc(sizeof(type)). The result has type type@, so usually
there is no need to explicitly cast the result (but doing so is harm-
less). Usually the construct new expr is more convenient than malloc
followed by initialization, but malloc can be useful for certain id-
ioms and when porting C code.

Notice that you cannot (yet) use malloc to allocate space for arrays
(as in the common idiom, malloc(n*sizeof(type)). Also, the
type-checker uses a conservative analysis to ensure that the fields
of the allocated space are written before they are used.

Can I call free? Yes and no. Individual memory objects may not be freed.
In future versions, we may support freeing objects for which you
can prove that there are no other pointers to the object. Until then,
you must rely on a garbage collector to reclaim heap objects or use
regions (similar to “arenas” or “zones”) for managing collections of
objects.

For porting code, we have defined a free function that behaves as a
no-op, having type

void free(‘a::A ?);
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Is there a garbage collector? Yes, we use the Boehm-Demers-Weiser con-
servative collector. If you don’t want to use the garbage collector
(e.g., because you know that your program does little or no heap al-
location), you can use the -nogc flag when linking your executable.
This will make the executable smaller.

If you link against additional C code, that code must obey the usual
rules for conservative garbage collection: no wild pointers and no
calling malloc behind the collector’s back. Instead, you should call
GC_malloc. See the collector’s documentation for more informa-
tion.

Note that if you allocate all objects on the stack, garbage collection
will never occur. If you allocate all objects on the stack or in regions,
it is very unlikely collection will occur and nothing will actually get
collected.

How can I make a stack-allocated array? As in C, you declare a local vari-
able with an array type. Also as in C, all uses of the variable, except
as an argument to sizeof and &, are promoted to a pointer. If your
declaration is

int x[256];

then uses of x have type int @‘L{256} where L is the name of
the block in which x is declared. (Most blocks are unnamed and the
compiler just makes up a name.)

Stack-allocated arrays must be initialized when they are declared
(unlike other local variables). Use an array-initializer, as in

int y[] = { 0, 1, 2, 3 };
int z[] = { for i < 256 : i };

To pass (a pointer to) the array to another function, the function must
have a type indicating it can accept stack pointers, as explained else-
where.

Can I use salloc or realloc? Currently, we don’t provide support for
salloc. For realloc, we do provide support, but only on heap-
allocated char ? buffers.

157



Why do I have to cast from * to @ if I’ve already tested for NULL? Our com-
piler is not as smart as you are. It does not realize that you have
tested for NULL, and it insists on a check (the cast) just to be sure.
You can leave the cast implicit, but the compiler will emit a warn-
ing. We are currently working to incorporate a flow analysis to omit
spurious warning. Because of aliasing, threads, and undefined eval-
uation order, a sound analysis is non-trivial.

Why can’t a function parameter or struct field have type ‘a::M? Type vari-
ables of memory kind can be instantiated with types of any size.
There is no straightforward way to compile a function with an ar-
gument of arbitrary size. The obvious way to write such a function
is to manipulate a pointer to the arbitrary size value instead. So your
parameter should have type ‘a::M * or ‘a::M @.

Can I see how Cyclone compiles the code? Just compile with flags -save-c
and -pp. This tells the compiler to save the C code that it builds and
passes to gcc, and print it out using the pretty-printer. You will have
to work to make some sense out of the C code, though. It will likely
contain many extern declarations (because the code has already
gone through the preprocessor) and generated type definitions (be-
cause of tuples, tagged unions, and questionable pointers). Pattern-
matching code gets translated to a mess of temporary variables and
goto statements. Array-bounds checks and NULL checks can clutter
array-intensive and pointer-intensive code. And all typedefs are
expanded away before printing the output.

Can I use gdb on the output? You can run gdb, but debugging support
is not all the way there yet. By default, source-level debugging op-
erations within gdb will reference the C code generated by the Cy-
clone compiler, not the Cyclone source itself. In this case, you need
to be aware of three things. First, you have to know how Cyclone
translates top-level identifiers to C identifiers (it prepends Cyc_-
and separates namespaces by _ instead of ::) so you can set break-
points at functions. Second, it can be hard to print values because
many Cyclone types get translated to void *. Third, we do not yet
have source correlation, so if you step through code, you’re stepping
through C code, not Cyclone code.
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To improve this situation somehwat, you can compile your files with
the option --lineno. This will insert #line directives in the gen-
erated C code that refer to the original Cyclone code. This will allow
you to step through the program and view the Cyclone source rather
than the generated C. However, doing this has two drawbacks. First,
it may occlude some operation in the generated C code that is caus-
ing your bug. Second, compilation with --lineno is significantly
slower than without. Finally, the result is not bug-free; sometimes
the debugger will fall behind the actual program point and print the
wrong source lines; we hope to fix this problem soon.

Two more hints: First, on some architectures, the first memory alloca-
tion appears to seg fault in GC_findlimit. This is correct and doc-
umented garbage-collector behavior (it handles the signal but gdb
doesn’t know that); simply continue execution. Second, a common
use of gdb is to find the location of an uncaught exception. To do
this, set a breakpoint at throw (a function in the Cyclone runtime).

Can I use gprof on the output? Yes, just use the -pg flag. You should
also rebuild the Cyclone libraries and the garbage collector with the
-pg flag. The results of gprof make sense because a Cyclone func-
tion is compiled to a C function.

Notes for Cygwin users: First, the versions of libgmon.a we have
downloaded from cygnus are wrong (every call gets counted as a
self-call). We have modified libgmon.a to fix this bug, so download
our version and put it in your cygwin/lib directory. Second, tim-
ing information should be ignored because gprof is only sampling
100 or 1000 times a second (because it is launching threads instead
of using native Windows profiling). Neither of these problems are
Cyclone-specific.

Is there an Emacs mode for Cyclone? Sort of. In the doc/ directory of
the distribution you will find a font-lock.el file and elisp code
(in cyclone_dot_emacs.el) suitable for inclusion in your .emacs
file. However, these files change C++ mode and use it for Cyclone
rather than creating a new Cyclone mode. Of course, we intend to
make our own mode rather than destroy C++-mode’s ability to be
good for C++. Note that we have not changed the C++ indentation
rules at all; our elisp code is useful only for syntax highlighting.
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Does Cyclone have something to do with runtime code generation? Cyclone
has its roots in Popcorn, a language which was safe but not as com-
patible with C. An offshoot of Popcorn added safe runtime code
generation, and was called Cyclone. The current Cyclone language
is a merger of the two, refocused on safety and C compatibility. Cur-
rently, the language does not have support for runtime code genera-
tion.

What platforms are supported? You need a platform that has gcc, GNU
make, ar, sed, either bash or ksh, and the ability to build the Boehm-
Demers-Weiser garbage collector. Furthermore, the size of int and
all C pointers must be the same. We actively develop Cyclone in
Cygwin (a Unix emulation layer for Windows 98, NT, 2K), Linux,
and Mac OS X. Versions have run on OpenBSD and FreeBSD.

Why aren’t there more libraries? We are eager to have a wider code base,
but we are compiler writers with limited resources. Let us know of
useful code you write.

Why doesn’t List::imp_rev(l) change l to its reverse? The library func-
tion List::imp_revmutates its argument by reversing the tl fields.
It returns a pointer to the new first cell (the old last cell), but l still
points to the old first cell (the new last cell).

Can I inline functions? Functions can be declared inline as in ISO C99.
You can get additional inlining by compiling the Cyclone output
with the -O2 flag. Whether a function is inlined or not has no ef-
fect on Cyclone type-checking.

If Cyclone is safe, why does my program crash? There are certain classes
of errors that Cyclone does not attempt to prevent. Two examples are
stack overflow and various numeric traps, such as division-by-zero.
It is also possible to run out of memory. Other crashes could be due
to compiler bugs or linking against buggy C code (or linking incor-
rectly against C code).

Note that when using gdb, it may appear there is a seg fault in GC -
findlimit(). This behavior is correct; simply continue execution.
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What are compile-time constants? Cyclone’s compile-time constants are
NULL, integer and character constants, and arithmetic operations over
compile-time constants. Unlike C, sizeof(t) is not an integral con-
stant expression in our current implementation of Cyclone because
our compiler does not know the actual size of aggregate types; we
hope to repair this in a future version. Constructs requiring compile-
time constants are: tuple-subscript (e.g., x[3] for tuple x), sizes in
array declarations (e.g., int y[37]), and sizes in pointer bounds
(e.g., int * x{124}).

How can I get the size of an array? If expr is an array, then numelts(expr)
returns the number of elements in the array. If expr is a pointer to an
array, numelts(expr) returns the number of elements in the array
pointed to. If expr is a fat pointer, then the number of elements is
calculated at runtime from the bounds information contained in the
fat pointer. For other types, the size is determined at compile-time.

C Libraries

C.1 C Libraries

Cyclone provides partial support for the following C library headers, at
least on Linux. On other platforms (e.g., Cygwin), some of these headers
are not available. Furthermore, not all definitions from these headers are
available, but rather, those that we could easily make safe.
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<aio.h> <arpa/inet.h> <assert.h>
<complex.h> <cpio.h> <ctype.h>
<dirent.h> <dlfcn.h> <errno.h>
<fcntl.h> <fenv.h> <float.h>
<fmtmsg.h> <fnmatch.h> <ftw.h>
<getopt.h> <glob.h> <grp.h>
<inttypes.h> <iso646.h> <langinfo.h>
<libgen.h> <limits.h> <locale.h>
<math.h> <monetary.h> <mqueue.h>
<ndbm.h> <net/if.h> <netdb.h>
<netinet/in.h> <netinet/tcp.h> <nl_types.h>
<poll.h> <pthread.h> <pwd.h>
<regexp.h> <sched.h> <search.h>
<semaphore.h> <setjmp.h> <signal.h>
<spawn.h> <stdarg.h> <stdbool.h>
<stddef.h> <stdint.h> <stdio.h>
<stdlib.h> <string.h> <strings.h>
<stropts.h> <sys/dir.h> <sys/file.h>
<sys/ioctl.h> <sys/ipc.h> <sys/mman.h>
<sys/msg.h> <sys/resource.h> <sys/select.h>
<sys/sem.h> <sys/shm.h> <sys/socket.h>
<sys/stat.h> <sys/statvfs.h> <sys/syslog.h>
<sys/time.h> <sys/timeb.h> <sys/times.h>
<sys/types.h> <sys/uio.h> <sys/un.h>
<sys/utsname.h> <sys/wait.h> <tar.h>
<termios.h> <tgmath.h> <time.h>
<trace.h> <ucontext.h> <ulimit.h>
<unistd.h> <utime.h> <utmpx.h>
<wchar.h> <wctype.h> <wordexp.h>

C.2 <array.h>

Defines namespace Array, implementing utility functions on arrays.
void qsort(cmpfn_t<‘a,‘r,‘r>,‘a ?@aqual(‘EQ281)‘r x,

int len);

qsort(cmp,x,len) sorts the first len elements of array x into as-
cending order (according to the comparison function cmp) by the Quick-

162



Sort algorithm. cmp(a,b) should return a number less than, equal to,
or greater than 0 according to whether a is less than, equal to, or greater
than b. qsort throws Core::InvalidArg("Array::qsort") if
len is negative or specifies a segment outside the bounds of x.

qsort is not a stable sort.

void msort(cmpfn_t<‘a,‘H,‘H>,‘a ?@aqual(‘EQ284) x,int len);

msort(cmp,x,len) sorts the first len elements of array x into as-
cending order (according to the comparison function cmp), by the Merge-
Sort algorithm. msort throws Core::InvalidArg("Array::msort")
if len is negative or specifies a segment outside the bounds of x.

msort is a stable sort.

‘a ?@aqual(‘EQ288) from_list(List::list_t<‘a> l);

from_list(l) returns a heap-allocated array with the same elements
as the list l.

List::list_t<‘a> to_list(‘a ?@aqual(‘EQ292) x);

to_list(x) returns a new heap-allocated list with the same elements
as the array x.

‘a ?@aqual(‘EQ296) copy(‘a ?@aqual(‘EQ300) x);

copy(x) returns a fresh copy of array x, allocated on the heap.

‘b ?@aqual(‘EQ304) map(‘b (@ f)(‘a),‘a ?@aqual(‘EQ308) x);

map(f,x) applies f to each element of x, returning the results in a new
heap-allocated array.

‘b ?@aqual(‘EQ313) map_c(‘b (@ f)(‘c,‘a),‘c env,‘a ?@aqual(‘EQ317) x);

map_c(f,env,x) is like map(f,x) except that f requires a closure
env as its first argument.

void imp_map(‘a (@ f)(‘a),‘a ?@aqual(‘EQ322) x);

imp_map(f,x) replaces each element xi of x with f(xi).

void imp_map_c(‘a (@ f)(‘b,‘a),‘b env,‘a ?@aqual(‘EQ327) x);

imp_map_c is a version of imp_map where the function argument re-
quires a closure as its first argument.
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datatype exn{
Array_mismatch

};

Array_mismatch is thrown when two arrays don’t have the same
length.

‘c ?@aqual(‘EQ332) map2(‘c (@ f)(‘a,‘b),‘a ?@aqual(‘EQ336) x,
‘b ?@aqual(‘EQ340) y);

If x has elements x1 through xn, and y has elements y1 through yn,
then map2(f,x,y) returns a new heap-allocated array with elements
f(x1,y1) through f(xn,yn). If x and y don’t have the same number
of elements, Array_mismatch is thrown.

void app(‘b (@ f)(‘a),‘a ?@aqual(‘EQ344)‘r x);

app(f,x) applies f to each element of x, discarding the results. Note
that f must not return void.

void app_c(‘c (@ f)(‘a,‘b),‘a env,‘b ?@aqual(‘EQ349) x);

app_c(f,env,x) is like app(f,x), except that f requires a closure
env as its first argument.

void iter(void (@ f)(‘a),‘a ?@aqual(‘EQ354) x);

iter(f,x) is like app(f,x), except that f returns void.

void iter_c(void (@ f)(‘b,‘a),‘b env,‘a ?@aqual(‘EQ359) x);

iter_c(f,env,x) is like app_c(f,env,x) except that f returns
void.

void app2(‘c (@ f)(‘a,‘b),‘a ?@aqual(‘EQ364) x,‘b ?@aqual(‘EQ368) y);

If x has elements x1 through xn, and y has elements y1 through yn,
then app2(f,x,y) performs f(x1,y1) through f(xn,yn) and dis-
cards the results. If x and y don’t have the same number of elements,
Array_mismatch is thrown.

void app2_c(‘d (@ f)(‘a,‘b,‘c),‘a env,‘b ?@aqual(‘EQ373) x,
‘c ?@aqual(‘EQ377) y);

app2_c is a version of appwhere the function argument requires a clo-
sure as its first argument.
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void iter2(void (@ f)(‘a,‘b),‘a ?@aqual(‘EQ382) x,‘b ?@aqual(‘EQ386) y);

iter2 is a version of app2 where the function returns void.

void iter2_c(void (@ f)(‘a,‘b,‘c),‘a env,‘b ?@aqual(‘EQ391) x,
‘c ?@aqual(‘EQ395) y);

iter2_c is a version of app2_c where the function returns void.

‘a fold_left(‘a (@ f)(‘a,‘b),‘a accum,‘b ?@aqual(‘EQ400) x);

If x has elements x1 through xn, then fold_left(f,accum,x) re-
turns f(f(...(f(x2,f(x1,accum))),xn-1),xn).

‘a fold_left_c(‘a (@ f)(‘c,‘a,‘b),‘c env,‘a accum,‘b ?@aqual(‘EQ405) x);

fold_left_c is a version of fold_left where the function argu-
ment requires a closure as its first argument.

‘b fold_right(‘b (@ f)(‘a,‘b),‘a ?@aqual(‘EQ410) x,
‘b accum);

If x has elements x1 through xn, then fold_right(f,accum,x) re-
turns f(x1,f(x2,...,f(xn-1,f(xn,a))...)).

‘b fold_right_c(‘b (@ f)(‘c,‘a,‘b),‘c env,‘a ?@aqual(‘EQ415) x,
‘b accum);

fold_right_c is a version of fold_right where the function argu-
ment requires a closure as its first argument.

‘a ?@aqual(‘EQ420) rev_copy(‘a ?@aqual(‘EQ424) x);

rev_copy(x) returns a new heap-allocated array whose elements are
the elements of x in reverse order.

void imp_rev(‘a ?@aqual(‘EQ428) x);

imp_rev(x) reverses the elements of array x.

bool forall(bool (@ pred)(‘a),‘a ?@aqual(‘EQ432) x);

forall(pred,x) returns true if pred returns true when applied to
every element of x, and returns false otherwise.
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bool forall_c(bool (@ pred)(‘a,‘b),‘a env,‘b ?@aqual(‘EQ437) x);

forall_c is a version of forall where the predicate argument re-
quires a closure as its first argument.

bool exists(bool (@ pred)(‘a),‘a ?@aqual(‘EQ442) x);

exists(pred,x) returns true if pred returns true when applied to
some element of x, and returns false otherwise.

bool exists_c(bool (@ pred)(‘a,‘b),‘a env,‘b ?@aqual(‘EQ447) x);

exists_c is a version of exists where the predicate argument re-
quires a closure as its first argument.

$(‘a,‘b) ?@aqual(‘EQ452) zip(‘a ?@aqual(‘EQ455)‘r1 x,
‘b ?@aqual(‘EQ459) y);

If x has elements x1 through xn, and y has elements y1 through yn,
then zip(x,y) returns a new heap-allocated array with elements $(x1,y1)
through $(xn,yn). If x and y don’t have the same number of ele-
ments, Array_mismatch is thrown.

$(‘a ?@aqual(‘EQ463),‘b ?@aqual(‘EQ467)) split($(‘a,
‘b) ?@aqual(‘EQ471) x);

If x has elements $(a1,b1) through $(an,bn), then split(x) re-
turns a pair of new heap-allocated arrays with elements a1 through
an, and b1 through bn.

bool memq(‘a ?@aqual(‘EQ475) l,‘a x);

memq(l,x) returns true if x is == an element of array l, and returns
false otherwise.

bool mem(int (@ cmp)(‘a,‘a),‘a ?@aqual(‘EQ479) l,‘a x);

mem(cmp,l,x) is like memq(l,x) except that the comparison func-
tion cmp is used to determine if x is an element of l. cmp(a,b) should
return 0 if a is equal to b, and return a non-zero number otherwise.

‘a ?@aqual(‘EQ484) extract(‘a ?@aqual(‘EQ488) x,int start,
int *@aqual(‘EQ492) len_opt);

extract(x,start,len_opt) returns a new array whose elements
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are the elements of x beginning at index start, and continuing to the
end of x if len_opt is NULL; if len_opt points to an integer n, then
n elements are extracted. If n<0 or there are less than n elements in x
starting at start, then Core::InvalidArg("Array::extract")
is thrown.

C.3 <bitvec.h>

Defines namespace Bitvec, which implements bit vectors. Bit vectors are
useful for representing sets of numbers from 0 to n, where n is not too
large.
typedef int ?@aqual(‘EQ1229)‘r bitvec_t<‘r>;

bitvec_t is the type of bit vectors.

bitvec_t new_empty(int);

new_empty(n) returns a bit vector containing n bits, all set to 0.

bitvec_t new_full(int);

new_full(n) returns a bit vector containing n bits, all set to 1.

bitvec_t new_copy(bitvec_t);

new_copy(v) returns a copy of bit vector v.

bool get(bitvec_t,int);

get(v,n) returns the nth bit of v.

void set(bitvec_t,int);

set(v,n) sets the nth bit of v to 1.

void clear(bitvec_t,int);

clear(v,n) sets the nth bit of v to 0.

bool get_and_set(bitvec_t,int);

get_and_set(v,n) sets the nth bit of v to 1, and returns its value
before the set.
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void clear_all(bitvec_t);

clear_all(v) sets every bit in v to 0.

void set_all(bitvec_t);

set_all(v) sets every bit in v to 1.

bool all_set(bitvec_t bvec,int sz);

all_set(v) returns true if every bit in v is set to 1, and returns false
otherwise.

void union_two(bitvec_t dest,bitvec_t src1,bitvec_t src2);

union_two(dest,src1,src2) sets dest to be the union of src1
and src2: a bit of dest is 1 if either of the corresponding bits of src1
or src2 is 1, and is 0 otherwise.

void intersect_two(bitvec_t dest,bitvec_t src1,bitvec_t src2);

intersect_two(dest,src1,src2) sets dest to be the intersec-
tion of src1 and src2: a bit of dest is 1 if both of the corresponding
bits of src1 and src2 are 1, and is 0 otherwise.

void diff_two(bitvec_t dest,bitvec_t src1,bitvec_t src2);

diff_two(dest,src1,src2) sets dest to be the difference of src1
and src2: a bit of dest is 1 if the corresponding bit of src1 is 1, and
the corresponding bit of src2 is 0; and is 0 otherwise.

bool compare_two(bitvec_t src1,bitvec_t src2);

compare_two(src1,src2) returns true if src1 and src2 are equal,
and returns false otherwise.

C.4 <buffer.h>

Defines namespace Buffer, which implements extensible character arrays.
It was ported from Objective Caml.
typedef struct t @@aqual(‘EQ1726) T;

T is the type of buffers.
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T create(unsigned int n);

create(n) returns a fresh buffer, initially empty. n is the initial size
of an internal character array that holds the buffer’s contents. The in-
ternal array grows when more than n character have been stored in
the buffer; it shrinks back to the initial size when reset is called. If
n is negative, no exception is thrown; a buffer with a small amount of
internal storage is returned instead.

mstring_t contents(T);

contents(b) heap allocates and returns a string whose contents are
the contents of buffer b.

mstring_t<‘H,UNIQUE> extract(T);

extract(b) is like contents(b) except that returns a unique pointer
to the internal array itself, adding a zero terminator at the current po-
sition. This avoids making a copy. However, the buffer b is unusable
until this array is restored.

bool restore(T,mstring_t<‘H,UNIQUE>) __attribute__((consume(2)));

restore(b,s) restores the string s to be the internal array of buffer
b. If b already has valid contents, the operation fails and b is freed,
returning false. Otherwise, true is returned.

size_t length(T);

length(b) returns the number of characters in buffer b.

void clear(T);

clear(b) makes b have zero characters. Internal storage is not re-
leased.

void reset(T);

reset(b) sets the number of characters in b to zero, and sets the in-
ternal storage to the initial string. This means that any storage used to
grow the buffer since the last create or reset can be freed.

void add_char(T,char);

add_char(b,c) appends character c to the end of b.
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void add_substring(T,string_t,int offset,int len);

add_substring(b,s,ofs,len) takes len characters starting at off-
set ofs in string s and appends them to the end of b. If ofs and
len do not specify a valid substring of s, then the function throws
InvalidArg("Buffer::add_substring"). Note, the substring spec-
ified by offset and len may contain NUL (0) characters; in any case,
the entire substring is appended to b, not just the substring up to the
first NUL character.

void add_string(T,string_t);

add_string(b,s) appends the string s to the end of b.

void add_buffer(T buf_dest,T buf_source);

add_buffer(b1,b2) appends the current contents of b2 to the end
of b1. b2 is not modified.

C.5 <core.h>

The file <core.h> defines some types and functions outside of any names-
pace, and also defines a namespace Core.

The following declarations are made outside of any namespace.
typedef const char ?@aqual(‘q)@nozeroterm‘r string_t<‘r,

‘q>;

A string_t<‘r> is a constant array of characters allocated in region
‘r.

typedef char ?@aqual(‘q)@nozeroterm‘r mstring_t<‘r,
‘q>;

An mstring_t<‘r> is a non-const (mutable) array of characters allo-
cated in region ‘r.

typedef string_t<‘r1,‘q1> @@aqual(‘q2)‘r2 stringptr_t<‘r1,
‘r2,
‘q1,
‘q2>;

A stringptr_t<‘r1,‘r2> is used when a “boxed” string is needed,
for example, you can have a list of string pointers, but not a list of
strings.
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typedef mstring_t<‘r1,‘q1> @@aqual(‘q2)‘r2 mstringptr_t<‘r1,
‘r2,
‘q1,
‘q2>;

mstringptr_t is the mutable version of stringptr_t.

typedef char *@aqual(‘q)@nozeroterm‘r Cbuffer_t<‘r,
‘q>;

Cbuffer_t is a possibly-NULL, non-zero-terminated C buffer

typedef char @@aqual(‘q)@nozeroterm‘r CbufferNN_t<‘r,
‘q>;

CbufferNN_t is a non-NULL, non-zero-terminated C buffer

typedef const char ?@aqual(‘q)@nozeroterm‘r buffer_t<‘r,
‘q>;

buffer_t is a non-zero-terminated dynamically sized buffer

typedef int bool;

In Cyclone, we use bool as a synonym for int. We also define macros
true and false, which are 1 and 0, respectively.

The rest of the declarations are in namespace Core.
typedef tag_t<valueof_t(sizeof(‘a))> sizeof_t<‘a>;

sizeof_typ<T> is the singleton type of sizeof(T).

struct Opt<‘a>{
‘a v;

};

A struct Opt is a cell with a single field, v (for value).

typedef struct Opt<‘a> *@aqual(‘q)‘r opt_t<‘a,‘r,‘q>;

An opt_t is a pointer to a struct Opt. An opt_t can be used to
pass an optional value to a function, or return an optional result. For
example, to return no result, return NULL; to return a result x, return
new Opt(x).
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Another way to return an option result of type t would be to return a
pointer to t. The opt_t type is useful primarily when porting Objec-
tive Caml code, which has a corresponding type.

opt_t<‘b,‘H,UNIQUE> opt_map(‘b (@ f)(‘a),opt_t<‘a> x);

opt_map(f,x) applies f to the value contained in option x, if any,
and returns the result as an option; if x is NULL, opt_map(f,x) re-
turns NULL.

mstring_t<‘H> new_string(unsigned int);

new_string(n) allocates space for n characters on the heap and re-
turns a pointer to the space. All of the characters are set to NUL (0).

mstring_t<‘r> rnew_string(region_t<‘r>,unsigned int);

rnew_string(r,n) allocates space for n characters in the region with
handle r, and returns a pointer to the space. All of the characters are
set to NUL (0).

mstring_t<‘r,‘q> rqnew_string(region_t<‘r>,aqual_t<‘q>,
unsigned int);

rqnew_string(r,q,n) same as above ...except allocates with aqual(‘q)

bool true_f(‘a);

true_f is the constant true function: true_f(x) returns true re-
gardless of the value of x.

bool false_f(‘a);

false_f is the constant false function.

‘a fst($(‘a,‘b) @@aqual(‘EQ1753));

fst(x) returns the first element of the pair pointed to by x.

‘b snd($(‘a,‘b) @@aqual(‘EQ1757));

snd(x) returns the second element of the pair pointed to by x.

‘c third($(‘a,‘b,‘c) @@aqual(‘EQ1761));

third(x) returns the third element of the triple pointed to by x.
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‘a identity(‘a);

identity is the identity function: identity(x) returns x.

int intcmp(int,int);

intcmp is a comparison function on integers: intcmp(i1,i2) re-
turns a number less than, equal to, or greater than 0 according to whether
i1 is less than, equal to, or greater than i2.

int charcmp(char,char);

charcmp is a comparison function on char.

int ptrcmp(‘a @@aqual(‘EQ1764)‘r,‘a @@aqual(‘EQ1767)‘r);

ptrcmp is a comparison function on pointers.

region_t<‘C> current_handle();

current_handle() returns the region handle on the top of the LIFO
region stack. If the region stack is empty, then this will be the heap
region.

datatype exn{
Invalid_argument(string_t)

};

Invalid_argument is an exception thrown by library functions when
one of their arguments is inappropriate.

datatype exn{
Failure(string_t)

};

Failure is an exception that’s thrown by library functions when they
encounter an unexpected error.

datatype exn{
Impossible(string_t)

};

The Impossible exception is thrown when a supposedly impossible
situation occurs (whether in a library or in your own code). For exam-
ple, you might throw Impossible if an assertion fails.
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datatype exn{
Not_found

};

The Not_found exception is thrown by search functions to indicate
failure. For example, a function that looks up an entry in a table can
throw Not_found if the entry is not found.

int region_used_bytes(region_t<‘r>);

region_used_bytes returns the number of bytes currently allocated
for region pages for Cyclone objects; i.e., does not account for overhead
of region page data structures.

int region_free_bytes(region_t<‘r>);

region_free_bytes returns the number of bytes currently free in
the current region page.

int region_alloc_bytes(region_t<‘r>);

region_alloc_bytes returns the number of bytes of allocated Cy-
clone objects in the region.

region_t<‘H> heap_region;

heap_region is the region handle of the heap.

aqual_t<REFCNT> refcnt_qual;

these handles are used for allocating pointers of each kind; RESTRICTED
is abstract

void ufree(‘a *@aqual(UNIQUE) ptr) __attribute__((noliveunique(1)));

ufree frees a unique pointer.

void rufree(region_t<‘r> h,‘a *@aqual(UNIQUE)‘r ptr:single(‘r)) __attribute__((noliveunique(2)));

refcnt_region is the region handle of the reference-counted region.
Data allocated in this region contains an additional reference count for
managing aliases.

int refptr_count(‘a ?@aqual(REFCNT)‘r ptr);

refptr_count(p) returns the current reference count for p (always
¿= 1); p is not consumed.
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‘a ?@aqual(REFCNT)‘r alias_refptr(‘a ?@aqual(REFCNT)‘r ptr);

alias_refptr(p) returns an alias to p, and increments the reference
count by 1. p is not consumed.

void drop_refptr(‘a ?@aqual(REFCNT) ptr) __attribute__((noliveunique(1)));

drop_refptr(p) decrements the reference count on p by 1. If the ref-
erence count goes to 0, it frees p. This will not recursively decrement
reference counts to embedded pointers, meaning that those pointers
will have to get GC’ed if p ends up being freed.

‘a ?@aqual(‘EQ1790)@autoreleased‘r autorelease_handle(region_t<‘r> h,
‘a ?@aqual(‘EQ1793)‘RC ptr) __attribute__((noliveunique(2)));

autorelease(h,p) attaches the given reference-counted pointer to
the region h; the count on p will be decremted when the region is freed.
An alias into the pool is returned, and p is consumed.

‘a ?@aqual(‘EQ1796)@autoreleased‘C autorelease(‘a ?@aqual(‘EQ1799)‘RC ptr) __attribute__((noliveunique(1)));

autorelease(p) is the same as autorelease_handle(current_-
handle(),p).

‘a ?@aqual(‘EQ1802)‘RC inc_refptr(‘a ?@aqual(‘EQ1805)@autoreleased‘r ptr);

inc_refptr(p) increments the reference count of the given autore-
leased pointer, returning a reference-counted pointer to that storage.
This pointer will outlive the current autorelease pool.

struct DynamicRegion<‘r::R>;

struct DynamicRegion<‘r> is an abstract type for the dynamic re-
gion named ‘r. Dynamic regions can be created and destroyed at will,
but access to them must be done through the open region function.

typedef struct DynamicRegion<‘r1> @@aqual(‘q)‘r2 region_key_t<‘r1,
‘q,
‘r2>;

A region_key_t<‘r1,‘r2> is a pointer (in ‘r2) to a DynamicRegion<‘r1>.
Keys are used as capabilities for accessing a dynamic region. You have
to present a key to the open procedure to access the region.
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typedef region_key_t<‘r,UNIQUE,‘r2> uregion_key_t<‘r,
‘r2>;

A uregion_key_t<‘r> is a unique pointer to a DynamicRegion<‘r>.
You can’t make copies of the key, but if you call free_ukey, then you
are assured that the region ‘r is reclaimed.

typedef region_key_t<‘r,REFCNT,‘r2> rcregion_key_t<‘r,
‘r2>;

A rcregion_key_t<‘r> is a reference-counted pointer to a DynamicRegion<‘r>.
You can make copies of the key using alias_refptr which incre-
ments the reference count. You can call free_rckey to destroy the
key, which will decrement the reference count. If the count reaches
zero, then the region will be reclaimed.

struct NewDynamicRegion<‘q::Q>{<‘r>
region_key_t<‘r,‘q> key;

};

A struct NewDynamicRegion<‘r2> is used to return a new dy-
namic region ‘r. The struct hides the name of the region and must be
opened, guaranteeing that the type-level name is unique.

struct NewDynamicRegion<UNIQUE> _new_ukey(unsigned int dis_reaps,
const char *@aqual(‘EQ1811)@nozeroterm file,
const char *@aqual(‘EQ1815)@nozeroterm func,
int lineno);

new_ukey() creates a fresh dynamic region ‘r and returns a unique
key for that region.

struct NewDynamicReap<UNIQUE> _new_reap_ukey(unsigned int dis_reaps,
const char *@aqual(‘EQ1827)@nozeroterm file,
const char *@aqual(‘EQ1831)@nozeroterm func,
int lineno);

new_reap_ukey() creates a fresh dynamic reap ‘r and returns a
unique key for that region.
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struct NewDynamicReap<REFCNT> _new_reap_rckey(unsigned int dis_reaps,
const char *@aqual(‘EQ1835)@nozeroterm file,
const char *@aqual(‘EQ1839)@nozeroterm func,
int lineno);

new_reap_rckey() creates a fresh dynamic reap ‘r and returns a
reference counted key for that region.

void free_ukey(uregion_key_t<‘r> k) __attribute__((consume(1)));

free_ukey(k) takes a unique key for the region ‘r and deallocates
the region ‘r and destroys the key k.

void free_rckey(rcregion_key_t<‘r> k) __attribute__((consume(1)));

free_rckey(k) takes a reference-counted key for the region ‘r, decre-
ments the reference count and destroyes the key k. If the reference
count becomes zero, then all keys have been destroyed and the region
‘r is deallocated.

‘result open_region(region_key_t<‘r,‘q> key,‘arg arg,
‘result (@ body)(region_t<‘r> h,

‘arg arg):RESTRICTED >= ‘q);

open_region(k,arg,body) extracts a region handle h for the re-
gion ‘r which the k provides access to. The handle and value arg are
passed to the function pointer body and the result is returned. Note
that k can be either a uregion_key_t or an rcregion_key_t. The
caller does not need to have static access to region ‘r when calling
open_region but that capability is allowed within body. In essence,
the key k provides dynamic evidence that ‘r is still live.

void rethrow(datatype exn @@aqual(‘EQ1844)) __attribute__((noreturn));

throws the exception without updating the source or line number in-
formation. Useful for try ... catch case e: ... rethrow(e);

const char *@aqual(‘EQ1848) get_exn_name(datatype exn @@aqual(‘EQ1852));

returns the name of the exception as a string

const char *@aqual(‘EQ1856) get_exn_filename();

if an exception is thrown, then you can use @get exn filename@ to de-
termine what source file caused the exception.
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void set_uncaught_exn_fun(int (*@aqual(‘EQ1860))());

if an exception is thrown and no handler is installed, the function passed
as an argument is executed before the exception is actually thrown.
(A useful argument is Execinfo::bt.)

int get_exn_lineno();

if an exception is thrown, then you can use @get exn lineno@ to deter-
mine what source line caused the exception.

__cyclone_internal_array_t<‘a,‘i,‘r> arrcast(‘a ?@aqual(‘EQ1869)‘r dyn,
__cyclone_internal_singleton<‘i> bd,
sizeof_t<‘a> sz);

Converts dyn to a thin pointer with length bd, assuming that bd is less
than numelts(dyn); sz is the size of the elements in dyn. This routine
is useful for eliminating bounds checks within loops.

‘a ?@aqual(‘EQ1872)‘r mkfat(__nn_cyclone_internal_array_t<‘a,
‘i,
‘r> arr,

sizeof_t<‘a> s,__cyclone_internal_singleton<‘i> n);

mkfat can be used to convert a thin pointer (@) of elements of type ‘a
to a fat pointer (?). It requires that you pass in the size of the element
type, as well as the number of elements.

struct ThinRes<‘a::A,‘r>{<‘i::I>
__cyclone_internal_array_t<‘a,‘i,‘r> arr;
__cyclone_internal_singleton<‘i> nelts;

};

ThinRes<‘a,‘r> is used as the return type of mkthin. It includes an
abstract integer ‘i, and a thin pointer arr to a vector of ‘i values of
type ‘a, living in region ‘r, and a tag_t<‘i> value nelts which has
the value of ‘i.

struct ThinRes<‘a,‘r> mkthin(‘a ?@aqual(‘EQ1875)‘r dyn,
sizeof_t<‘a> sz);

mkthin is a special case of arrcast, which converts a fat pointer to a thin
pointer and its bound. It requires that you pass in the size of the ele-
ment type.
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unsigned int arr_prevsize(‘a ?@aqual(‘EQ1879) arr,sizeof_t<‘a> elt_sz);

Returns the distance, in terms of elements of size elt_sz, to the start
of the buffer pointed to by arr.

C.6 <dict.h>

Defines namespace Dict, which implements dictionaries: mappings from
keys to values. The dictionaries are implemented functionally: adding
a mapping to an existing dictionary produces a new dictionary, without
affecting the existing dictionary. To enable an efficient implementation,
you are required to provide a total order on keys (a comparison function).

We follow the conventions of the Objective Caml Dict library as much
as possible.

Namespace Dict implements a superset of namespace SlowDict, except
that delete_present is not supported.
typedef struct Dict<‘a,‘b,‘r> dict_t<‘a,‘b,‘r>;

A value of type dict_t<‘a,‘b,‘r> is a dictionary that maps keys of
type ‘a to values of type ‘b; the dictionary datatypes live in region ‘r.

datatype exn{
Present

};

Present is thrown when a key is present but not expected.

datatype exn{
Absent

};

Absent is thrown when a key is absent but should be present.

dict_t<‘a,‘b> empty(int (@@aqual(‘EQ2507) cmp)(‘a,‘a));

empty(cmp) returns an empty dictionary, allocated on the heap. cmp
should be a comparison function on keys: cmp(k1,k2) should return
a number less than, equal to, or greater than 0 according to whether k1
is less than, equal to, or greater than k2 in the ordering on keys.
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dict_t<‘a,‘b,‘r> rempty(region_t<‘r>,int (@@aqual(‘EQ2510) cmp)(‘a,
‘a));

rempty(r,cmp) is like empty(cmp) except that the dictionary is al-
located in the region with handle r.

dict_t<‘a,‘b,‘r> rshare(region_t<‘r>,dict_t<‘a,‘b,‘r2>:{‘r2} > ‘r);

rshare(r,d) creates a virtual copy in region ‘r of the dictionary d
that lives in region ‘r2. The internal data structures of the new dictio-
nary share with the old one.

bool is_empty(dict_t d);

is_empty(d) returns true if d is empty, and returns false otherwise.

int cardinality(dict_t d);

cardinality(d) returns the number of keys in the dictionary.

bool member(dict_t<‘a> d,‘a k);

member(d,k) returns true if k is mapped to some value in d, and
returns false otherwise.

dict_t<‘a,‘b,‘r> insert(dict_t<‘a,‘b,‘r> d,‘a k,‘b v);

insert(d,k,v) returns a dictionary with the same mappings as d,
except that k is mapped to v. The dictionary d is not modified.

dict_t<‘a,‘b,‘r> insert_new(dict_t<‘a,‘b,‘r> d,‘a k,
‘b v);

insert_new(d,k,v) is like insert(d,k,v), except that it throws
Present if k is already mapped to some value in d.

dict_t<‘a,‘b,‘r> inserts(dict_t<‘a,‘b,‘r> d,list_t<$(‘a,
‘b) @@aqual(‘EQ2514)> l);

inserts(d,l) inserts each key, value pair into d, returning the result-
ing dictionary.

dict_t<‘a,‘b> singleton(int (@@aqual(‘EQ2517) cmp)(‘a,
‘a),

‘a k,‘b v);

singleton(cmp,k,v) returns a new heap-allocated dictionary with
a single mapping, from k to v.
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dict_t<‘a,‘b,‘r> rsingleton(region_t<‘r>,int (@@aqual(‘EQ2520) cmp)(‘a,
‘a),

‘a k,‘b v);

rsingleton(r,cmp,k,v) is like singleton(cmp,k,v), except the
resulting dictionary is allocated in the region with handle r.

‘b lookup(dict_t<‘a,‘b> d,‘a k);

lookup(d,k) returns a pointer to the value associated with key k in
d, or throws Absent if k is not mapped to any value.

‘b lookup_other(dict_t<‘a,‘b> d,int (@ cmp)(‘c,‘a),
‘c k);

lookup_other(d,cmp,k) returns a pointer to the value associated
with key k in d, or throws Absent if k is not mapped to any value.
The comparison function associated with the dictionary is ignored and
instead, the cmp argument is used. Note that cmp must respect the
same ordering constraints as the dictionary’s built-in comparison in
order to succeed. This is useful when the dictionary has keys that are
pointers into one region, but you want to look up with a key that is a
pointer into another region.

‘b *@aqual(‘EQ2524)‘r lookup_opt(dict_t<‘a,‘b,‘r> d,
‘a k);

lookup_opt(d,k) returns NULL if k is not mapped to any value in d,
and returns a non-NULL, heap-allocated option containing the value k
is mapped to in d otherwise.

bool lookup_bool(dict_t<‘a,‘b> d,‘a k,‘b @@aqual(‘EQ2528) ans);

If d maps k to a value, then lookup_bool(d,k,ans) assigns that
value to *ans and returns true; otherwise, it returns false.

‘c fold(‘c (@ f)(‘a,‘b,‘c),dict_t<‘a,‘b> d,‘c accum);

If d has keys k1 through kn mapping to values v1 through vn, then
fold(f,d,accum) returns f(k1,v1,...f(kn,vn,accum)...).

‘c fold_c(‘c (@ f)(‘d,‘a,‘b,‘c),‘d env,dict_t<‘a,‘b> d,
‘c accum);

fold_c(f,env,d,accum) is like fold(f,d,accum) except that f
takes closure env as its first argument.
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void app(‘c (@ f)(‘a,‘b),dict_t<‘a,‘b> d);

app(f,d) applies f to every key/value pair in d; the results of the
applications are discarded. Note that f cannot return void.

void app_c(‘c (@ f)(‘d,‘a,‘b),‘d env,dict_t<‘a,‘b> d);

app_c(f,env,d) is like app(f,d) except that f takes closure env as
its first argument.

void iter(void (@ f)(‘a,‘b),dict_t<‘a,‘b> d);

iter(f,d) is like app(f,d) except that f returns void.

void iter_c(void (@ f)(‘c,‘a,‘b),‘c env,dict_t<‘a,‘b> d);

iter_c(f,env,d) is like app_c(f,env,d) except that f returns
void.

void iter2(void (@@aqual(‘EQ2538) f)(‘b,‘b),dict_t<‘a,
‘b> d1,

dict_t<‘a,‘b> d2);

For every key k in the domain of both d1 and d2, iter2(f,d1,d2)
performs f(lookup(d1,k), lookup(d2,k)). If there is any key
present in d1 but not d2, then Absent is thrown.

void iter2_c(void (@@aqual(‘EQ2542) f)(‘c,‘b,‘b),‘c env,
dict_t<‘a,‘b> d1,dict_t<‘a,‘b> d2);

iter2_c is like iter except that f takes a closure as its first argument.

‘c fold2_c(‘c (@@aqual(‘EQ2546) f)(‘d,‘a,‘b1,‘b2,‘c),
‘d env,dict_t<‘a,‘b1> d1,dict_t<‘a,‘b2> d2,
‘c accum);

If k1 through kn are the keys of d1, then fold2_c(f,env,d1,d2,accum)
returns f(env,k1,lookup(k1,d1),lookup(k1,d2), ... f(env,kn,lookup(kn,d1),lookup(kn,d2),accum)...).
If there is any key present in d1 but not d2, then Absent is thrown.

dict_t<‘a,‘b,‘r> rcopy(region_t<‘r>,dict_t<‘a,‘b>);

rcopy(r,d) returns a copy of d, newly allocated in the region with
handle r.
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dict_t<‘a,‘b> copy(dict_t<‘a,‘b>);

copy(r,d) returns a copy of d, newly allocated on the heap.

dict_t<‘a,‘c> map(‘c (@ f)(‘b),dict_t<‘a,‘b> d);

map(f,d) applies f to each value in d, and returns a new dictionary
with the results as values: for every binding of a key k to a value v in
d, the result binds k to f(v). The returned dictionary is allocated on
the heap.

dict_t<‘a,‘c,‘r> rmap(region_t<‘r>,‘c (@ f)(‘b),dict_t<‘a,
‘b> d);

rmap(r,f,d) is like map(f,d), except the resulting dictionary is al-
located in the region with handle r.

dict_t<‘a,‘c> map_c(‘c (@ f)(‘d,‘b),‘d env,dict_t<‘a,
‘b> d);

map_c(f,env,d) is like map(f,d) except that f takes env as its first
argument.

dict_t<‘a,‘c,‘r> rmap_c(region_t<‘r>,‘c (@ f)(‘d,‘b),
‘d env,dict_t<‘a,‘b> d);

rmap_c(r,f,env,d) is like map_c(f,env,d) except that the re-
sulting dictionary is allocated in the region with handle r.

dict_t<‘a,‘b,‘r> union_two_c(‘b (@@aqual(‘EQ2554) f)(‘c,
‘a,
‘b,
‘b),

‘c env,dict_t<‘a,‘b,‘r> d1,
dict_t<‘a,‘b,‘r> d2);

union_two_c(f,env,d1,d2) returns a new dictionary with a bind-
ing for every key in d1 or d2. If a key appears in both d1 and d2, its
value in the result is obtained by applying f to the two values, the key,
and env. Note that the resulting dictionary is allocated in the same re-
gion as d2. (We don’t use union as the name of the function, because
union is a Cyclone keyword.)
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dict_t<‘a,‘b,‘r> intersect(‘b (@@aqual(‘EQ2558) f)(‘a,
‘b,
‘b),

dict_t<‘a,‘b,‘r> d1,dict_t<‘a,
‘b,
‘r> d2);

intersect(f,d1,d2) returns a new dictionary with a binding for
every key in both d1 and d2. For every key appearing in both d1 and
d2, its value in the result is obtained by applying f to the key and the
two values. Note that the input dictionaries and result must be allo-
cated in the same region.

dict_t<‘a,‘b,‘r> intersect_c(‘b (@@aqual(‘EQ2562) f)(‘c,
‘a,
‘b,
‘b),

‘c env,dict_t<‘a,‘b,‘r> d1,
dict_t<‘a,‘b,‘r> d2);

intersect_c(f,env,d1,d2) is like intersect(f,d1,d2), except
that f takes env as its first argument.

bool forall_c(bool (@ f)(‘c,‘a,‘b),‘c env,dict_t<‘a,
‘b> d);

forall_c(f,env,d) returns true if f(env,k,v) returns true for ev-
ery key k and associated value v in d, and returns false otherwise.

bool forall_intersect(bool (@ f)(‘a,‘b,‘b),dict_t<‘a,
‘b> d1,

dict_t<‘a,‘b> d2);

forall_intersect(f,d1,d2) returns true if f(k,v1,v2) returns
true for every key k appearing in both d1 and d2, where v1 is the value
of k in d1, and v2 is the value of k in d2; and it returns false otherwise.

$(‘a,‘b) @@aqual(‘EQ2567)‘r rchoose(region_t<‘r>,dict_t<‘a,
‘b> d);

rchoose(r,d) returns a key/value pair from d, allocating the pair in
region r; if d is empty, Absent is thrown.
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list_t<$(‘a,‘b) @@aqual(‘EQ2571)> to_list(dict_t<‘a,
‘b> d);

to_list(d) returns a list of the key/value pairs in d, allocated on the
heap.

list_t<$(‘a,‘b) @@aqual(‘EQ2574)‘r,‘r> rto_list(region_t<‘r>,
dict_t<‘a,

‘b> d);

rto_list(r,d) is like to_list(d), except that the resulting list is
allocated in the region with handle r.

dict_t<‘a,‘b> filter(bool (@ f)(‘a,‘b),dict_t<‘a,‘b> d);

filter(f,d) returns a dictionary that has a binding of k to v for ev-
ery binding of k to v in d such that f(k,v) returns true. The resulting
dictionary is allocated on the heap.

dict_t<‘a,‘b,‘r> rfilter(region_t<‘r>,bool (@ f)(‘a,
‘b),

dict_t<‘a,‘b> d);

rfilter(r,f,d) is like filter(f,d), except that the resulting dic-
tionary is allocated in the region with handle r.

dict_t<‘a,‘b> filter_c(bool (@ f)(‘c,‘a,‘b),‘c env,
dict_t<‘a,‘b> d);

filter_c(f,env,d) is like filter(f,d) except that f takes a clo-
sure env as its first argument.

dict_t<‘a,‘b,‘r> rfilter_c(region_t<‘r>,bool (@ f)(‘c,
‘a,
‘b),

‘c env,dict_t<‘a,‘b> d);

rfilter_c(r,f,env,d) is like filter_c(f,env,d), except that
the resulting dictionary is allocated in the region with handle r.

dict_t<‘a,‘b> difference(dict_t<‘a,‘b> d1,dict_t<‘a,
‘b> d2);

difference(d1,d2) returns a dictionary that has a binding of k to
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v for every binding of k to v in d1 where k is not in d2. (Note that the
values of d2 are not relevant to difference(d1,d2).) The resulting
dictionary is allocated on the heap.

dict_t<‘a,‘b,‘r> rdifference(region_t<‘r>,dict_t<‘a,
‘b> d1,

dict_t<‘a,‘b> d2);

rdifference(d1,d2) is like difference(d1,d2), except that the
resulting dictionary is allocated in the region with handle r.

dict_t<‘a,‘b> delete(dict_t<‘a,‘b>,‘a);

delete(d,k) returns a dictionary with the same bindings as d, except
that any binding of k is removed. The resulting dictionary is allocated
on the heap.

dict_t<‘a,‘b,‘r> rdelete(region_t<‘r>,dict_t<‘a,‘b>,
‘a);

rdelete(r,d,k) is like delete(d,k) except that the result is allo-
cated in the region with handle r.

dict_t<‘a,‘b,‘r> rdelete_same(dict_t<‘a,‘b,‘r>,‘a);

rdelete_same(d,k) is like delete(d,k), except that the resulting
dictionary is allocated in the same region as the input dictionary d.
This can be faster than delete(d,k) because it avoids a copy when k
is not a member of d.

Iter::iter_t<$(‘a,‘b),‘bd> make_iter(region_t<‘r1> rgn,
dict_t<‘a,‘b,‘r2> d:regions($(‘a,

‘b)) > ‘bd,
{‘r1,
‘r2} > ‘bd);

make_iter(rgn,d) returns an iterator over the dictionary d; O(log
n) space is allocated in rgn where n is the number of elements in d.

C.7 <filename.h>

Defines a namespace Filename, which implements some useful operations
on file names that are represented as strings.
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mstring_t concat(string_t,string_t);

Assuming that s1 is a directory name and s2 is a file name, concat(s1,s2)
returns a new (heap-allocated) file name for the child s2 of directory
s1.

mstring_t chop_extension(string_t);

chop_extension(s) returns a copy of s with any file extension re-
moved. A file extension is a period (‘.’) followed by a sequence of
non-period characters. If s does not have a file extension, chop_-
extension(s) throws Core::Invalid_argument("chop_extension").

mstring_t dirname(string_t);

dirname(s) returns the directory part of s. For example, if s is "foo/bar/baz",
dirname(s) returns "foo/bar".

mstring_t basename(string_t);

basename(s) returns the file part of s. For example, if s is "foo/bar/baz",
basename(s) returns "baz".

bool check_suffix(string_t,string_t);

check_suffix(filename,suffix) returns true if filename ends
in suffix, and returns false otherwise.

mstring_t gnuify(string_t);

gnuify(s) forces s to follow Unix file name conventions: any Win-
dows separator characters (backslashes) are converted to Unix separa-
tor characters (forward slashes).

C.8 <fn.h>

Defines namespace Fn, which implements closures: a way to package up
a function with some hidden data (an environment). Many of the library
functions taking function arguments have versions for functions that re-
quire an explicit environment; the closures of namespace Fn are different,
they combine the function and environment, and the environment is hid-
den. They are useful when two functions need environments of different
type, but you need them to have the same type; you can do this by hiding
the environment from the type of the pair.
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typedef struct Function<‘arg,‘res,‘bd> @@aqual(‘EQ3042) fn_t<‘arg,
‘res,
‘bd>;

A value of type fn_t<‘arg,‘res,‘eff> is a function and its closure;
‘arg is the argument type of the function, ‘res is the result type, and
‘bd is a region that regions(‘arg) outlive.

fn_t<‘arg,‘res,‘bd> make_fn(‘res (@@aqual(‘EQ3045)‘bd f)(‘env,
‘arg),

‘env x:regions(‘env) > ‘bd);

make_fn(f,env) builds a closure out of a function and an environ-
ment.

fn_t<‘arg,‘res,‘bd> fp2fn(‘res (@@aqual(‘EQ3048)‘bd f)(‘arg):regions($(‘arg,
‘res)) > ‘bd);

fp2fn(f) converts a function pointer to a closure.

‘res apply(fn_t<‘arg,‘res>,‘arg);

apply(f,x) applies closure f to argument x (taking care of the hid-
den environment in the process).

fn_t<‘a,‘c,‘bd> compose(fn_t<‘a,‘b,‘bd>,fn_t<‘b,‘c,
‘bd>:regions($(‘a,

‘b,
‘c)) > ‘bd);

compose(g,f) returns the composition of closures f and g; apply(compose(g,f),x)
has the same effect as apply(f,apply(g,x)).

fn_t<‘a,fn_t<‘b,‘c,‘bd>,‘bd> curry(fn_t<$(‘a,‘b) @@aqual(‘EQ3051),
‘c,‘bd> f:regions($(‘a,

‘b,
‘c)) > ‘bd);

curry(f) curries a closure that takes a pair as argument: if x points to
a pair $(x1,x2), then apply(f,x) has the same effect as apply(apply(curry(f),x1),x2).
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fn_t<$(‘a,‘b) @@aqual(‘EQ3055),‘c,‘bd> uncurry(fn_t<‘a,
fn_t<‘b,

‘c,
‘bd>,

‘bd> f:regions($(‘a,
‘b,
‘c)) > ‘bd);

uncurry(f) converts a closure that takes two arguments in sequence
into a closure that takes the two arguments as a pair: if x points to a
pair $(x1,x2), then apply(uncurry(f),x) has the same effect as
apply(apply(f,x1),x2).

List::list_t<‘b> map_fn(fn_t<‘a,‘b>,List::list_t<‘a>);

map_fn(f,x) maps the closure f on the list x: if x has elements x1
through xn, then map_fn(f,x) returns a new heap-allocated list with
elements apply(f,x1) through apply(f,xn).

C.9 <graph.h>

Defines namespace Graph, which implements functional graphs that are
parameterized over the type of the nodes of the graph. To create a graph
you must supply a comparison function on nodes (the comparison func-
tion should return a number less than, equal to, or greater than 0 according
to whether its first argument is less than, equal to, or greater than its sec-
ond argument).

A node s that is the source of an edge (s,t) in a graph is called a source
node of the graph; a node that appears only as a target is not a source node.
Whether a node is a source node matters for some of the graph functions,
notably, scc and tsort. Use add_node to ensure that a node is a source
node.
typedef Dict::dict_t<‘a,Set::set_t<‘a>> graph_t<‘a>;

A value of type graph_t<‘a> is a graph with nodes of type ‘a.

void print(FILE @@aqual(‘EQ3812)‘r f,graph_t<‘a> g,
void (@@aqual(‘EQ3816) nodeprint)(FILE @@aqual(‘EQ3819)‘r,

‘a));

print(f,g,nodeprint) prints the graph g to file f. nodeprint
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must be a printing function for nodes. The output is in the DOT lan-
guage, suitable for display by Graphviz.

graph_t<‘a> empty(int (@@aqual(‘EQ3822) cmp)(‘a,‘a));

empty(cmp) creates an empty graph given comparison function cmp.
The graph is heap-allocated.

graph_t<‘a> add_node(graph_t<‘a> g,‘a s);

add_node(g,s) returns a graph identical to g, except that s is added
as a source node of g (if necessary).

graph_t<‘a> add_edge(graph_t<‘a> g,‘a s,‘a t);

add_edge(g,s,t) returns a graph identical to g except that there is
an edge from s to t. t is not added as a source node of the result.

graph_t<‘a> add_edges(graph_t<‘a> g,‘a s,Set::set_t<‘a,
‘H> T);

add_edges(g,s,T) returns a graph identical to g except that there is
an edge from s to every node in the set T. The nodes of T are not added
as source nodes of the result.

graph_t<‘a> remove_edge(graph_t<‘a> g,‘a s,‘a t);

remove_edge(g,s,t) returns a graph identical to g except that any
edge from s to t is removed.

graph_t<‘a> remove_edges(graph_t<‘a> g,‘a s,Set::set_t<‘a,
‘H> T);

remove_edge(g,s,T) returns a graph identical to g except that any
edge from s to a node in the set T is removed.

int is_edge(graph_t<‘a> g,‘a s,‘a t);

is_edge(g,s,t) returns true if there is an edge from s to t in g, and
returns false otherwise.

Set::set_t<‘a> get_targets(graph_t<‘a>,‘a s);

get_targets(g,s) returns the set of targets of node s in graph g.
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graph_t<‘a> tc(graph_t<‘a> g);

tc(g) returns the transitive closure of graph g: the nodes of tc(g)
are the nodes of g, and there is an edge from a node s to a node t in
tc(g) iff s can reach t by one or more edges in g. Note that tc(g) is
not necessarily reflexive.

graph_t<‘a> tkernel(graph_t<‘a> g);

tkernel(g) returns the transitive kernel of graph g: the nodes of
tkernel(g) are the nodes of g, and the edges tkernel(g) are a
minimal subset of the edges of g such that tc(tkernel(g)) is the
same as tc(g).

List::list_t<‘a> tsort(graph_t<‘a> g);

tsort(g) returns a list of the source nodes of g, in topological order.
That is, if s can reach t by one or more edges in g, then s appears
before t in tsort(g), unless t can also reach s by one or more edges
in g, in which case s and t will appear in some unspecified order in
the output.

graph_t<‘a> scc(graph_t<‘a> g);

scc(g) returns the strongly connected components of graph g: the
source nodes of scc(g) are the source nodes of g, and the targets
of any node s in scc(g) are the members of the strongly connected
component of s in g. We consider every s to be a member of its own
strongly connected component.

C.10 <hashtable.h>

Defines namespace Hashtable, which implements mappings from keys to
values. These hashtables are imperative—values are added and deleted
destructively. (Use namespace Dict or SlowDict if you need functional
(non-destructive) mappings.) To enable an efficient implementation, you
are required to provide a total order on keys (a comparison function).
typedef struct Table<‘a,‘b,‘r> @@aqual(‘EQ3978)‘r table_t<‘a,

‘b,
‘r>;
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A table_t<‘a,‘b> is a hash table with keys of type ‘a and values
of type ‘b.

table_t<‘a,‘b> create(int sz,int (@@aqual(‘EQ3981) cmp)(‘a,
‘a),

int (@@aqual(‘EQ3984) hash)(‘a));

create(sz,cmp,hash) returns a new hash table that starts out with
sz buckets. cmp should be a comparison function on keys: cmp(k1,k2)
should return a number less than, equal to, or greater than 0 according
to whether k1 is less than, equal to, or greater than k2. hash should
be a hash function on keys. cmp and hash should satisfy the following
property: if cmp(k1,k2) is 0, then hash(k1) must equal hash(k2).

table_t<‘a,‘b,‘r> rcreate(region_t<‘r>,int sz,int (@@aqual(‘EQ3987) cmp)(‘a,
‘a),

int (@@aqual(‘EQ3990) hash)(‘a));

rcreate(r,sz,cmp,hash) is similar to create but allocates its result
in the region r instead of the heap.

void insert(table_t<‘a,‘b>,‘a key,‘b val);

insert(t,key,val) binds key to value in t.

‘b lookup(table_t<‘a,‘b>,‘a key);

lookup(t,key) returns the value associated with key in t, or throws
Not_found if there is no value associated with key in t.

‘b *@aqual(‘EQ3993)‘r lookup_opt(table_t<‘a,‘b,‘r>,
‘a key);

lookup_opt(t,key) returns a pointer to the value associated with
key in t, or NULL if there is no value associated with key.

bool try_lookup(table_t<‘a,‘b>,‘a key,‘b @@aqual(‘EQ4002) data);

try_lookup(t,key,p) tries to find the key in the table t. If success-
ful, it sets *p to the value associated with key and returns true. If the
key is not found, then try lookup returns false.

void resize(table_t<‘a,‘b>);

resize(t) increases the size (number of buckets) in table t. resize
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is called automatically by functions like insert when the buckets of a
hash table get large, however, it can also be called by the programmer
explicitly.

void remove(table_t<‘a,‘b>,‘a key);

remove(t,key) removes the most recent binding of key from t; the
next-most-recent binding of key (if any) is restored. If there is no value
associated with key in t, remove returns silently.

int hash_string(string_t);

hash_string(s) returns a hash of a string s. It is provided as a con-
venience for making hash tables mapping strings to values.

int hash_stringptr(stringptr_t);

hash_stringptr(p) returns a hash of a string pointer p.

void iter(void (@ f)(‘a,‘b),table_t<‘a,‘b>);

iter(f,t) applies f to each key/value pair in t.

void iter_c(void (@ f)(‘a,‘b,‘c),table_t<‘a,‘b> t,‘c env);

iter_c(f,t,e) calls f(k,v,e) for each key/value pair (k,v).

C.11 <iter.h>

Defines namespace Iter, which implements imperative iterators over sets/sequences
of elements.
typedef struct Iter<‘a,‘bd> iter_t<‘a,‘bd>;

A value of type iter_t<‘a,‘bd> is an iterator over elements of type
‘a.

bool next(iter_t<‘a>,‘a @@aqual(‘EQ4170));

If there is a next element, next(i,p) returns true and assigns the
next element to *p. If there is no next element, next(i,p) returns
false without assigning anything to *p.
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C.12 <list.h>

Defines namespace List, which implements generic lists and various op-
erations over them, following the conventions of the Objective Caml list
library as much as possible.
struct List<‘a,‘r,‘q::Q>{

‘a hd;
struct List<‘a,‘r,‘q> *@aqual(‘q)‘r tl;

};

A struct List is a memory cell with a head field containing an ele-
ment and a tail field that points to the rest of the list. Such a structure is
traditionally called a cons cell. Note that every element of the list must
have the same type ‘a, and every cons cell in the list must be allocated
in the same region ‘r.

typedef struct List<‘a,‘r,‘q> *@aqual(‘q)‘r list_t<‘a,
‘r,
‘q>;

A list_t is a possibly-NULL pointer to a struct List. Most of the
functions in namespace List operate on values of type list_t rather
than struct List. Note that a list_t can be empty (NULL) but a
struct List cannot.

typedef struct List<‘a,‘r,‘q> @@aqual(‘q)‘r List_t<‘a,
‘r,
‘q>;

A List_t is a non-NULL pointer to a struct List. This is used
much less often than list_t, however it may be useful when you
want to emphasize that a list has at least one element.

list_t<‘a> list(... ‘a);

list(x1,...,xn) builds a heap-allocated list with elements x1 through
xn.

list_t<‘a,‘r> rlist(region_t<‘r>,... ‘a);

rlist(r, x1,...,xn) builds a list with elements x1 through xn,
allocated in the region with handle r.

194



int length(list_t<‘a> x);

length(x) returns the number of elements in list x.

‘a hd(List_t<‘a> x);

hd(x) returns the first element of list x.

list_t<‘a,‘r> tl(List_t<‘a,‘r> x);

tl(x) returns the tail of list x.

list_t<‘a> copy(list_t<‘a> x);

copy(x) returns a new heap-allocated copy of list x.

list_t<‘a,‘r> rcopy(region_t<‘r>,list_t<‘a> x);

rcopy(r,x) returns a new copy of list x, allocated in the region with
handle r.

list_t<‘b> map(‘b (@ f)(‘a),list_t<‘a> x);

If x has elements x1 through xn, then map(f,x) returns list(f(x1),...,f(xn)).

list_t<‘b,‘r> rmap(region_t<‘r>,‘b (@ f)(‘a),list_t<‘a> x);

If x has elements x1 through xn, then rmap(r,f,x) returns rlist(r,f(x1),...,f(xn)).

list_t<‘b> map_c(‘b (@ f)(‘c,‘a),‘c env,list_t<‘a> x);

map_c is a version of map where the function argument requires a clo-
sure as its first argument.

list_t<‘b,‘r> rmap_c(region_t<‘r>,‘b (@ f)(‘c,‘a),‘c env,
list_t<‘a> x);

rmap_c is a version of rmap where the function argument requires a
closure as its first argument.

datatype exn{
List_mismatch

};

List_mismatch is thrown when two lists don’t have the same length.
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list_t<‘c> map2(‘c (@ f)(‘a,‘b),list_t<‘a> x,list_t<‘b> y);

If x has elements x1 through xn, and y has elements y1 through yn,
then map2(f,x,y) returns a new heap-allocated list with elements
f(x1,y1) through f(xn,yn). If x and y don’t have the same num-
ber of elements, List_mismatch is thrown.

list_t<‘c,‘r> rmap2(region_t<‘r>,‘c (@ f)(‘a,‘b),list_t<‘a> x,
list_t<‘b> y);

rmap2(r,f,x,y) is like map2(f,x,y), except that the resulting list
is allocated in the region with handle r.

list_t<‘d> map3(‘d (@ f)(‘a,‘b,‘c),list_t<‘a> x,list_t<‘b> y,
list_t<‘c> z);

If x has elements x1 through xn, y has elements y1 through yn, and
z has elements z1 through zn, then map3(f,x,y,z) returns a new
heap-allocated list with elements f(x1,y1,z1) through f(xn,yn,zn).
If x, y, and z don’t have the same number of elements, List_mismatch
is thrown.

list_t<‘d,‘r> rmap3(region_t<‘r>,‘d (@ f)(‘a,‘b,‘c),
list_t<‘a> x,list_t<‘b> y,list_t<‘c> z);

rmap3(r,f,x,y,z) is like map3(f,x,y,z), except that the result-
ing list is allocated in the region with handle r.

void app(‘b (@ f)(‘a),list_t<‘a> x);

app(f,x) applies f to each element of x, discarding the results. Note
that f must not return void.

void app_c(‘c (@ f)(‘a,‘b),‘a,list_t<‘b> x);

app_c is a version of app where the function argument requires a clo-
sure as its first argument.

void app2(‘c (@ f)(‘a,‘b),list_t<‘a> x,list_t<‘b> y);

If x has elements x1 through xn, and y has elements y1 through yn,
then app2(f,x,y) performs f(x1,y1) through f(xn,yn) and dis-
cards the results. If x and y don’t have the same number of elements,
List_mismatch is thrown.
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void app2_c(‘d (@ f)(‘a,‘b,‘c),‘a env,list_t<‘b> x,
list_t<‘c> y);

app2_c is a version of app2 where the function argument requires a
closure as its first argument.

void iter(void (@ f)(‘a),list_t<‘a> x);

iter(f,x) is like app(f,x), except that f returns void.

void iter_c(void (@ f)(‘b,‘a),‘b env,list_t<‘a> x);

iter_c is a version of iter where the function argument requires a
closure as its first argument.

void iter2(void (@ f)(‘a,‘b),list_t<‘a> x,list_t<‘b> y);

iter2 is a version of app2 where the function returns void.

void iter2_c(void (@ f)(‘a,‘b,‘c),‘a env,list_t<‘b> x,
list_t<‘c> y);

iter2_c is a version of iter2 where the function argument requires
a closure as its first argument.

‘a fold_left(‘a (@ f)(‘a,‘b),‘a accum,list_t<‘b> x);

If x has elements x1 through xn, then fold_left(f,accum,x) re-
turns f(f(...(f(x2,f(x1,accum))),xn-1),xn).

‘a fold_left_c(‘a (@ f)(‘c,‘a,‘b),‘c,‘a accum,list_t<‘b> x);

fold_left_c is a version of fold_left where the function argu-
ment requires a closure as its first argument.

‘b fold_right(‘b (@ f)(‘a,‘b),list_t<‘a> x,‘b accum);

If x has elements x1 through xn, then fold_left(f,accum,x) re-
turns f(x1,f(x2,...,f(xn-1,f(xn,a))...)).

‘b fold_right_c(‘b (@ f)(‘c,‘a,‘b),‘c,list_t<‘a> x,
‘b accum);

fold_right_c is a version of fold_right where the function argu-
ment requires a closure as its first argument.
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list_t<‘a> revappend(list_t<‘a,‘r> x,list_t<‘a,‘H> y);

If x has elements x1 through xn, revappend(x,y) returns a list that
starts with elements xn through x1, then continues with y. Cons cells
for the first n elements are newly-allocated on the heap, and y must be
allocated on the heap.

list_t<‘a,‘r> rrevappend(region_t<‘r>,list_t<‘a> x,
list_t<‘a,‘r> y);

rrevappend(r,x,y) is like revappend(x,y), except that y must
be allocated in the region with handle r, and the result is allocated in
the same region.

list_t<‘a> rev(list_t<‘a> x);

rev(x) returns a new heap-allocated list whose elements are the ele-
ments of x in reverse.

list_t<‘a,‘r> rrev(region_t<‘r>,list_t<‘a> x);

rrev(r,x) is like rev(x), except that the result is allocated in the
region with handle r.

list_t<‘a,‘r> imp_rev(list_t<‘a,‘r> x);

imp_rev(x) imperatively reverses list x (the list is side-effected). Note
that imp_rev returns a list. This is because the first cons cell of the
result is the last cons cell of the input; a typical use is therefore x =
imp_rev(x).

list_t<‘a> append(list_t<‘a> x,list_t<‘a,‘H> y);

If x has elements x1 through xn, append(x,y) returns a list that starts
with elements x1 through xn, then continues with y. Cons cells for
the first n elements are newly-allocated on the heap, and y must be
allocated on the heap.

list_t<‘a,‘r> rappend(region_t<‘r>,list_t<‘a> x,list_t<‘a,
‘r> y);

rappend(r,x,y) is like append(x,y), except that y must be allo-
cated in the region with handle r, and the result is allocated in the
same region.
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list_t<‘a,‘r> imp_append(list_t<‘a,‘r> x,list_t<‘a,
‘r> y);

imp_append(x,y) modifies x to append y to it, destructively. Note
that imp_append returns a list. This is because x might be NULL, in
which case, imp_append(x,y) returns y; so a typical use would be x
= imp_append(x,y).

list_t<‘a> flatten(list_t<list_t<‘a,‘H>> x);

In flatten(x), x is a list of lists, and the result is a new heap-allocated
list with elements from each list in x, in sequence. Note that x must be
allocated on the heap.

list_t<‘a,‘r> rflatten(region_t<‘r>,list_t<list_t<‘a,
‘r>> x);

rflatten(r,x) is like flatten(x), except that the result is allo-
cated in the region with handle r, and each element of x must be allo-
cated in r.

list_t<‘a> merge_sort(int (@ cmp)(‘a,‘a),list_t<‘a> x);

merge_sort(cmp,x) returns a new heap-allocated list whose ele-
ments are the elements of x in ascending order (according to the com-
parison function cmp), by the MergeSort algorithm.

list_t<‘a,‘r> rmerge_sort(region_t<‘r>,int (@ cmp)(‘a,
‘a),

list_t<‘a> x);

rmerge_sort(r,x) is like merge_sort(x), except that the result is
allocated in the region with handle r.

list_t<‘a,‘r> rimp_merge_sort(int (@ cmp)(‘a,‘a),list_t<‘a,
‘r> x);

rimp_merge_sort is an imperative version of rmerge_sort: the list
is sorted in place. rimp_merge_sort returns a list because the first
cons cell of the sorted list might be different from the first cons cell of
the input list; a typical use is x = rimp_merge_sort(cmp,x).
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list_t<‘a> merge(int (@ cmp)(‘a,‘a),list_t<‘a,‘H> x,
list_t<‘a,‘H> y);

merge(cmp,x,y) returns the merge of two sorted lists, according to
the cmp function.

list_t<‘a,‘r3> rmerge(region_t<‘r3>,int (@ cmp)(‘a,
‘a),

list_t<‘a> a,list_t<‘a> b);

rmerge(r,cmp,x,y) is like merge(cmp,x,y), except that x, y, and
the result are allocated in the region with handle r.

list_t<‘a,‘r> imp_merge(int (@ cmp)(‘a,‘a),list_t<‘a,
‘r> a,

list_t<‘a,‘r> b);

imp_merge is an imperative version of merge.

datatype exn{
Nth

};

Nth is thrown when nth doesn’t have enough elements in the list.

‘a nth(list_t<‘a> x,int n);

If x has elements x0 through xm, and 0<=n<=m, then nth(x,n) re-
turns xn. If n is out of range, Nth is thrown. Note that the indexing is
0-based.

list_t<‘a,‘r> nth_tail(list_t<‘a,‘r> x,int i);

If x has elements x0 through xm, and 0<=n<=m, then nth(x,n) re-
turns the list with elements xn through xm. If n is out of range, Nth is
thrown.

bool forall(bool (@ pred)(‘a),list_t<‘a> x);

forall(pred,x) returns true if pred returns true when applied to
every element of x, and returns false otherwise.

bool forall_c(bool (@ pred)(‘a,‘b),‘a env,list_t<‘b> x);

forall_c is a version of forall where the function argument re-
quires a closure as its first argument.
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bool exists(bool (@ pred)(‘a),list_t<‘a> x);

exists(pred,x) returns true if pred returns true when applied to
some element of x, and returns false otherwise.

bool exists_c(bool (@ pred)(‘a,‘b),‘a env,list_t<‘b> x);

exists_c is a version of exists where the function argument re-
quires a closure as its first argument.

‘c *@aqual(‘EQ4362)‘r find_c(‘c *@aqual(‘EQ4365)‘r (@ pred)(‘a,
‘b),

‘a env,list_t<‘b> x);

find_c iterates over the given list and returns the first element for
which pred does not return NULL. Otherwise it returns NULL.

list_t<$(‘a,‘b) @@aqual(‘EQ4369),‘H> zip(list_t<‘a> x,
list_t<‘b> y);

If x has elements x1 through xn, and y has elements y1 through yn,
then zip(x,y) returns a new heap-allocated array with elements &$(x1,y1)
through &$(xn,yn). If x and y don’t have the same number of ele-
ments, List_mismatch is thrown.

list_t<$(‘a,‘b) @@aqual(‘EQ4372)‘r2,‘r1> rzip(region_t<‘r1> r1,
region_t<‘r2> r2,
list_t<‘a> x,
list_t<‘b> y);

rzip(r1,r2,x,y) is like zip(x,y), except that the list returned is
allocated in the region with handle r1, and the pairs of that list are
allocated in the region with handle r2.

list_t<$(‘a,‘b,‘c) @@aqual(‘EQ4375),‘H> zip3(list_t<‘a> x,
list_t<‘b> y,
list_t<‘c> z);

If x has elements x1 through xn, and y has elements y1 through yn,
and z has elements z1 through zn, then zip3(x,yz) returns a new
heap-allocated array with elements &$(x1,y1,z1) through &$(xn,yn,zn).
If x and y don’t have the same number of elements, List_mismatch
is thrown.
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list_t<$(‘a,‘b,‘c) @@aqual(‘EQ4378)‘r2,‘r1> rzip3(region_t<‘r1> r1,
region_t<‘r2> r2,
list_t<‘a> x,
list_t<‘b> y,
list_t<‘c> z);

rzip3(r1,r2,x,y) is like zip3(x,y), except that the list returned
is allocated in the region with handle r1, and the pairs of that list are
allocated in the region with handle r2.

$(list_t<‘a>,list_t<‘b>) split(list_t<$(‘a,‘b) @@aqual(‘EQ4382)> x);

If x has elements &$(a1,b1) through &$(an,bn), then split(x)
returns a pair of new heap-allocated arrays with elements a1 through
an, and b1 through bn.

$(list_t<‘a>,list_t<‘b>,list_t<‘c>) split3(list_t<$(‘a,
‘b,
‘c) @@aqual(‘EQ4386)> x);

If x has elements &$(a1,b1,c1) through &$(an,bn,cn), then split(x)
returns a triple of new heap-allocated arrays with elements a1 through
an, and b1 through bn, and c1 through cn.

$(list_t<‘a,‘r1>,list_t<‘b,‘r2>) rsplit(region_t<‘r1> r1,
region_t<‘r2> r2,
list_t<$(‘a,

‘b) @@aqual(‘EQ4390)> x);

rsplit(r1,r2,x) is like split(x), except that the first list returned
is allocated in the region with handle r1, and the second list returned
is allocated in the region with handle r2.

$(list_t<‘a,‘r3>,list_t<‘b,‘r4>,list_t<‘c,‘r5>) rsplit3(region_t<‘r3> r3,
region_t<‘r4> r4,
region_t<‘r5> r5,
list_t<$(‘a,

‘b,
‘c) @@aqual(‘EQ4394)> x);

rsplit(r1,r2,r3,x) is like split3(x), except that the first list
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returned is allocated in the region with handle r1, the second list re-
turned is allocated in the region with handle r2, and the third list re-
turned is allocated in the region with handle r3.

bool memq(list_t<‘a> l,‘a x);

memq(l,x) returns true if x is == an element of list l, and returns false
otherwise.

bool mem(int (@ compare)(‘a,‘a),list_t<‘a> l,‘a x);

mem(cmp,l,x) is like memq(l,x) except that the comparison func-
tion cmp is used to determine if x is an element of l. cmp(a,b) should
return 0 if a is equal to b, and return a non-zero number otherwise.

‘b assoc(list_t<$(‘a,‘b) @@aqual(‘EQ4399)> l,‘a k);

An association list is a list of pairs where the first element of each pair
is a key and the second element is a value; the association list is said to
map keys to values. assoc(l,k) returns the first value paired with
key k in association list l, or throws Core::Not_found if k is not
paired with any value in l. assoc uses == to decide if k is a key in l.

‘b assoc_cmp(int (@ cmp)(‘a,‘c),list_t<$(‘a,‘b) @@aqual(‘EQ4403)> l,
‘c x);

assoc_cmp(cmp,l,k) is like assoc(l,k) except that the compari-
son function cmp is used to decide if k is a key in l. cmp should return
0 if two keys are equal, and non-zero otherwise.

bool mem_assoc(list_t<$(‘a,‘b) @@aqual(‘EQ4408)> l,
‘a x);

mem_assoc(l,k) returns true if k is a key in association list l (ac-
cording to ==).

bool mem_assoc_cmp(int (@ cmp)(‘a,‘c),list_t<$(‘a,‘b) @@aqual(‘EQ4412)> l,
‘c x);

Same as mem_assoc, but uses comparison function cmp rather than
pointer equality ==.
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list_t<‘a,‘r> delete(list_t<‘a,‘r> l,‘a x);

delete(l,k) returns the list with the first occurence of x removed
from it, if x was in the list; otherwise raises Core::Not_found. Side-
effects original list l.

list_t<‘a,‘r> delete_cmp(int (@ cmp)(‘a,‘a),list_t<‘a,
‘r> l,

‘a x);

delete(l,k) returns the list with the first e in the list such that cmp(x,e)
== 0. If no such e exists, raises Core::Not_found. Side-effects origi-
nal list l.

Core::opt_t<‘c> check_unique(int (@ cmp)(‘c,‘c),list_t<‘c> x);

check_unique(cmp,x) checks whether the sorted list x has dupli-
cate elements, according to cmp. If there are any duplicates, one will be
returned; otherwise, NULL is returned.

‘a ?@aqual(‘EQ4418) to_array(list_t<‘a> x);

to_array(x) returns a new heap-allocated array with the same ele-
ments as list x.

‘a ?@aqual(‘EQ4421)‘r rto_array(region_t<‘r> r,list_t<‘a> x);

rto_array(r,x) is like to_array(x), except that the resulting ar-
ray is allocated in the region with handle r.

list_t<‘a> from_array(‘a ?@aqual(‘EQ4425) arr);

from_array(x) returns a new heap-allocated list with the same ele-
ments as array x.

list_t<‘a,‘r> rfrom_array(region_t<‘r> r,‘a ?@aqual(‘EQ4429) arr);

rfrom_array(r,x) is like from_array(x), except that the result-
ing list is allocated in the region with handle r.

int list_cmp(int (@ cmp)(‘a,‘b),list_t<‘a> l1,list_t<‘b> l2);

list_cmp(cmp,l1,l2) is a comparison function on lists, parameter-
ized by a comparison function cmp on list elements.
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bool list_prefix(int (@ cmp)(‘a,‘b),list_t<‘a> l1,list_t<‘b> l2);

list_prefix(cmp,l1,l2) returns true if l1 is a prefix of l2, using
cmp to compare the elements of l1 and l2.

list_t<‘a> filter(bool (@ f)(‘a),list_t<‘a> x);

filter(f,x) returns a new heap-allocated list whose elements are
the elements of x on which f returns true, in order.

list_t<‘a> filter_c(bool (@ f)(‘b,‘a),‘b env,list_t<‘a> x);

filter_c is a version of filter where the function argument re-
quires a closure as its first argument.

list_t<‘a,‘r> rfilter(region_t<‘r> r,bool (@ f)(‘a),
list_t<‘a> x);

rfilter_c(r,f,x) is like filter_c(f,x), except that the result-
ing list is allocated in the region with handle r.

list_t<‘a,‘r> rfilter_c(region_t<‘r> r,bool (@ f)(‘b,
‘a),

‘b env,list_t<‘a> x);

rfilter_c is a version of rfilter where the function argument re-
quires a closure as its first argument.

C.13 <pp.h>

Defines a namespace PP that has functions for implementing pretty print-
ers. Internally, PP is an implementation of Kamin’s version of Wadler’s
pretty printing combinators, with some extensions for doing hyperlinks
in Tk text widgets.

All of the internal data structures used by PP are allocated on the heap.
typedef struct Doc @@aqual(‘EQ5059) doc_t;

A value of type doc_t is a “document” that can be combined with
other documents, formatted at different widths, converted to strings
or files.

void file_of_doc(doc_t d,int w,FILE @@aqual(‘EQ5063) f);

file_of_doc(d,w,f) formats d to width w, and prints the format-
ted output to f.
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string_t string_of_doc(doc_t d,int w);

string_of_doc(d,w) formats d to width w, and returns the format-
ted output in a heap-allocated string.

$(string_t,list_t<$(int,int,int,string_t) @@aqual(‘EQ5067)>) @@aqual(‘EQ5071) string_and_links(doc_t d,
int w);

string_and_links(d,w) formats d to width w, returns the format-
ted output in a heap-allocated string, and returns in addition a list of
hyperlinks. Each hyperlink has the form $(line,char,length,contents),
where line and char give the line and character in the formatted out-
put where the hyperlink starts, length gives the number of characters
of the hyperlink, and contents is a string that the hyperlink should
point to. The line, char, and length are exactly what is needed to
create a hyperlink in a Tk text widget.

doc_t nil_doc();

nil_doc() returns an empty document.

doc_t blank_doc();

blank_doc() returns a document consisting of a single space charac-
ter.

doc_t line_doc();

line_doc() returns a document consisting of a single line break.

doc_t oline_doc();

oline_doc() returns a document consisting of an optional line break;
when the document is formatted, the pretty printer will decide whether
to break the line.

doc_t text(string_t<‘H> s);

text(s) returns a document containing exactly the string s.

doc_t textptr(stringptr_t<‘H> p);

textptr(p) returns a documents containing exactly the string pointed
to by p.
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doc_t text_width(string_t<‘H> s,int w);

text_width(s,w) returns a document containing exactly the string
s, which is assumed to have w characters. This is useful when s con-
tains markup character that don’t take up space when printed, e.g.,
instructions for making text bold.

doc_t hyperlink(string_t<‘H> shrt,string_t<‘H> full);

hyperlink(shrt,full) returns a document that will be formatted
as the string shrt linked to the string full.

doc_t nest(int k,doc_t d);

nest(k,d) returns a document that will be formatted like document
d, but indented by k spaces.

doc_t cat(... doc_t);

cat(d1, d2, ..., dn) returns a document consisting of document
d1 followed by d2, and so on up to dn.

doc_t cats(list_t<doc_t,‘H> doclist);

cats(l) returns a document containing all of the documents in list l,
in order.

doc_t cats_arr(doc_t ?@aqual(‘EQ5074) docs);

cats_arr(a) returns a document containing all of the documents in
array a, in order.

doc_t doc_union(doc_t d1,doc_t d2);

doc_union(d1,d2) does ?? FIX.

doc_t tab(doc_t d);

tab(d) returns a document formatted like d but indented by a tab
stop.

doc_t seq(string_t<‘H> sep,list_t<doc_t,‘H> l);

seq(sep,l) returns a document consisting of each document of l, in
sequence, with string sep between each adjacent element of l.
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doc_t ppseq(doc_t (@ pp)(‘a),string_t<‘H> sep,list_t<‘a> l);

ppseq is a more general form of seq: in ppseq(pp,sep,l), l is a list
of values to pretty print in sequence, pp is a function that knows how
to pretty print a value, and sep is a string to print between each value.

doc_t seql(string_t<‘H> sep,list_t<doc_t,‘H> l0);

seql is like seq, except that the resulting document has line breaks
after each separator.

doc_t ppseql(doc_t (@ pp)(‘a),string_t<‘H> sep,list_t<‘a> l);

ppseql is like ppseq, except that the resulting document has line
breaks after each separator.

doc_t group(string_t<‘H> start,string_t<‘H> stop,string_t<‘H> sep,
list_t<doc_t,‘H> l);

group(start,stop,sep,l) is like cat(text(start), seq(sep,l),
text(stop)).

doc_t groupl(string_t<‘H> start,string_t<‘H> stop,string_t<‘H> sep,
list_t<doc_t,‘H> l);

groupl is like group but a line break is inserted after each separator.

doc_t egroup(string_t<‘H> start,string_t<‘H> stop,string_t<‘H> sep,
list_t<doc_t,‘H> l);

egroup is like group, except that the empty document is returned if
the list is empty.

C.14 <queue.h>

Defines namespace Queue, which implements generic imperative queues
and various operations following the conventions of the Objective Caml
queue library as much as possible.
typedef struct Queue<‘a,‘r,‘q> @@aqual(‘q)‘r queue_t<‘a,

‘r,
‘q>;

A value of type queue_t<‘a,‘r> is a first-in, first-out queue of ele-
ments of type ‘a; the queue data structures are allocated in region ‘r.
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bool is_empty(queue_t<‘a>);

is_empty(q) returns true if q contains no elements, and returns false
otherwise.

queue_t<‘a> create();

create() allocates a new, empty queue on the heap and returns it.

void add(queue_t<‘a,‘H>,‘a x) __attribute__((consume(2)));

add(q,x) adds x to the end of q (by side effect).

void radd(region_t<‘r>,queue_t<‘a,‘r>,‘a x:RESTRICTED >= aquals(‘a)) __attribute__((consume(3)));

radd(r,q,x) is like add(q,x) except that the queue lives in the re-
gion with handle r.

void push(queue_t<‘a,‘H> q,‘a x) __attribute__((consume(2)));

push(q,x) adds x to the front of q (by side effect).

void rpush(region_t<‘r> r,queue_t<‘a,‘r> q,‘a x) __attribute__((consume(3)));

rpush(r,q,x) is like push(q,x) except that the queue lives in the
region with handle r.

datatype exn{
Empty

};

Empty is an exception raised by take and peek.

‘a take(queue_t<‘a>);

take(q) removes the element from the front on q and returns it; if q
is empty, exception Empty is thrown.

‘a peek(queue_t<‘a>);

peek(q) returns the element at the front of q, without removing it
from q. If q is empty, exception Empty is thrown.

void clear(queue_t<‘a>);

clear(q) removes all elements from q.
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int length(queue_t<‘a>);

length(q) returns the number of elements in q.

void iter(void (@ f)(‘a),queue_t<‘a>);

iter(f,q) applies f to each element of q, from first to last. Note that
f must return void.

void app(‘b (@ f)(‘a),queue_t<‘a>);

app(f,q) applies f to each element of q, from first to last. Note that
f must return a value of kind M.

The following procedures are specialized to work with no-aliasable and/or
unique pointers.
‘a *@aqual(UNIQUE) take_match(region_t<‘r> r,queue_t<‘a *@aqual(UNIQUE),

‘r> q,
bool (@@aqual(‘EQ5358) f)(‘b,

‘a *@aqual(UNIQUE)),
‘b env);

take_match(r,q,f,c) looks through the queue (starting from the
front) and returns the element x for which f(x,c) returns true.

‘a noalias_take(queue_t<‘a> q,‘a null_elem) __attribute__((consume(2)));

noalias_take(q) is as take, above, but works when the queue con-
tains potentially-unique elements; the caller needs to supply a ’null’
element to swap with the element in the first spot in the queue.

‘a *@aqual(‘EQ5363)‘U ptr_take(queue_t<‘a *@aqual(‘EQ5366)‘U> q);

ptr_take(q) is a wrapper for noalias_take(q,NULL).

C.15 <rope.h>

Defines namespace Rope, which implements character arrays that can be
concatenated in constant time.
typedef struct Rope_node @@aqual(‘EQ5639) rope_t;

A value of type rope_t is a character array that can be efficiently con-
catenated.
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rope_t from_string(string_t<‘H>);

from_string(s) returns a rope that has the same characters as string
s. Note that s must be heap-allocated.

mstring_t to_string(rope_t);

to_string(r) returns a new, heap-allocated string with the same
characters as rope r.

rope_t concat(rope_t,rope_t);

concat(r1,r2) returns a rope whose characters are the characters of
r1 followed by the characters of r2.

rope_t concata(rope_t ?@aqual(‘EQ5642));

concata(a) returns a rope that contains the concatenation of the char-
acters in the array a of ropes.

rope_t concatl(List::list_t<rope_t>);

concata(l) returns a rope that contains the concatenation of the char-
acters in the list l of ropes.

unsigned int length(rope_t);

length(r) returns the number of characters in the rope r, up to but
not including the first NUL character.

int cmp(rope_t,rope_t);

cmp(r1,r2) is a comparison function on ropes: it returns a number
less than, equal to, or greater than 0 according to whether the character
array of r1 is lexicographically less than, equal to, or greater than the
character array of r2.

C.16 <set.h>

Defines namespace Set, which implements polymorphic, functional, finite
sets over elements with a total order, following the conventions of the Ob-
jective Caml set library as much as possible. Sets can also be used imper-
atively, but choosing the imp variations of functions, but unioning and
intersecting imperative sets should be done with caution.
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typedef struct Set<‘a,‘r> @@aqual(‘EQ5925)‘r set_t<‘a,
‘r>;

A value of type set_t<‘a,‘r> is a set with elements of type ‘a. The
data structures used to implement the set (not the elements of the set!)
are in region ‘r.

The set creation functions require a comparison function as an argument.
The comparison function should return a number less than, equal to, or
greater than 0 according to whether its first argument is less than, equal
to, or greater than its second argument.
set_t<‘a> empty(int (@@aqual(‘EQ5928) cmp)(‘a,‘a));

empty(cmp) creates an empty set given comparison function cmp.
The set is heap-allocated.

set_t<‘a,‘r> rempty(region_t<‘r> r,int (@@aqual(‘EQ5931) cmp)(‘a,
‘a));

rempty(r,cmp) creates an empty set in the region with handle r.

set_t<‘a> singleton(int (@@aqual(‘EQ5934) cmp)(‘a,‘a),
‘a x);

singleton(cmp,x) creates a set on the heap with a single element,
x.

set_t<‘a> from_list(int (@@aqual(‘EQ5937) cmp)(‘a,‘a),
list_t<‘a> l);

from_list(cmp,l) creates a set on the heap; the elements of the set
are the elements of the list l.

set_t<‘a> insert(set_t<‘a,‘H> s,‘a elt);

insert(s,elt) returns a set containing all the elements of s, plus
elt. The set s is not modified.

void imp_insert(set_t<‘a,‘H> s,‘a elt);

imp_insert(s,elt) returns modifies s to additionally contain elt,
if not already present.
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set_t<‘a,‘r> rinsert(region_t<‘r> r,set_t<‘a,‘r> s,
‘a elt);

rinsert(r,s,elt) is like insert(s,elt), except that it works on
sets allocated in the region with handle r.

void imp_rinsert(region_t<‘r> r,set_t<‘a,‘r> s,‘a elt);

imp_rinsert(r,s,elt) is like imp_insert(s,elt), except that
it works on sets allocated in the region with handle r.

set_t<‘a> union_two(set_t<‘a,‘H> s1,set_t<‘a,‘H> s2);

union_two(s1,s2) returns a set whose elements are the union of the
elements of s1 and s2. (We use the name union_two because union
is a keyword in Cyclone.)

set_t<‘a> intersect(set_t<‘a,‘H> s1,set_t<‘a,‘H> s2);

intersect(s1,s2) returns a set whose elements are the intersection
of the elements of s1 and s2.

set_t<‘a> diff(set_t<‘a,‘H> s1,set_t<‘a,‘H> s2);

diff(s1,s2) returns a set whose elements are the elements of s1 that
are not members of s2.

set_t<‘a> delete(set_t<‘a,‘H> s,‘a elt);

delete(s,elt) returns a set whose elements are the elements of s,
minus elt.

‘a imp_delete(set_t<‘a,‘H> s,‘a elt);

imp_delete(s,elt) imperatively deletes elt from s, if present. re-
turns the element (in case the element in the set differs from elt due
to how the comparison function was specified).

int cardinality(set_t s);

cardinality(s) returns the number of elements in the set s.

bool is_empty(set_t s);

is_empty(s) returns true if s has no members, and returns false oth-
erwise.
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bool member(set_t<‘a> s,‘a elt);

member(s,elt) returns true if elt is a member of s, and returns
false otherwise.

bool subset(set_t<‘a> s1,set_t<‘a> s2);

subset(s1,s2) returns true if s1 is a subset of s2, and returns false
otherwise.

int setcmp(set_t<‘a> s1,set_t<‘a> s2);

setcmp(s1,s2) returns a number less than, equal to, or greater than
0 according to whether s1 is less than, equal to, or greater than s2 in
the subset order.

bool equals(set_t<‘a> s1,set_t<‘a> s2);

equals(s1,s2) returns true if s1 equals s2 have the same elements,
and returns false otherwise.

‘b fold(‘b (@ f)(‘a,‘b),set_t<‘a> s,‘b accum);

If s is a set with elements x1 through xn, then fold(f,s,accum)
returns f(x1,f(x2,f(...,f(xn,accum)...))).

‘b fold_c(‘b (@ f)(‘c,‘a,‘b),‘c env,set_t<‘a> s,‘b accum);

fold_c(f,env,s,accum) is like fold, except that the function f
takes an extra (closure) argument, env.

void app(‘b (@ f)(‘a),set_t<‘a> s);

app(f,s) applies f to each element of s, in no particular order; the
result of the application is discarded. Notice that f cannot return void;
use iter instead of app for that.

void iter(void (@ f)(‘a),set_t<‘a> s);

iter(f,s) is like app(f,s), except that f must return void.

void iter_c(void (@ f)(‘c,‘a),‘c env,set_t<‘a> s);

iter_c is a version of iter where the function argument f requires a
closure.
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datatype exn{
Absent

};

Absent is an exception thrown by the choose function.

‘a choose(set_t<‘a> s);

choose(s) returns some element of the set s; if the set is empty,
choose throws Absent.

Iter::iter_t<‘a,‘bd> make_iter(region_t<‘r1> rgn,set_t<‘a,
‘r2> s:regions(‘a) > ‘bd,

{‘r1,
‘r2} > ‘bd);

make_iter(s) returns an iterator over the set s; a constant amount
of space is allocated in rgn.

C.17 <slowdict.h>

Defines namespace SlowDict, which implements polymorphic, functional,
finite maps whose domain must have a total order. We follow the conven-
tions of the Objective Caml Dict library as much as possible.

The basic functionality is the same as Dict, except that SlowDict sup-
ports delete_present; but region support still needs to be added, and
some functions are missing, as well.
typedef struct Dict<‘a,‘b> @@aqual(‘EQ6215) dict_t<‘a,

‘b>;

A value of type dict_t<‘a,‘b> is a dictionary that maps keys of type
‘a to values of type ‘b.

datatype exn{
Present

};

Present is thrown when a key is present but not expected.

datatype exn{
Absent

};

Absent is thrown when a key is absent but should be present.
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dict_t<‘a,‘b> empty(int (@@aqual(‘EQ6218) cmp)(‘a,‘a));

empty(cmp) returns an empty dictionary, allocated on the heap. cmp
should be a comparison function on keys: cmp(k1,k2) should return
a number less than, equal to, or greater than 0 according to whether k1
is less than, equal to, or greater than k2 in the ordering on keys.

bool is_empty(dict_t d);

is_empty(d) returns true if d is empty, and returns false otherwise.

bool member(dict_t<‘a> d,‘a k);

member(d,k) returns true if k is mapped to some value in d, and
returns false otherwise.

dict_t<‘a,‘b> insert(dict_t<‘a,‘b> d,‘a k,‘b v);

insert(d,k,v) returns a dictionary with the same mappings as d,
except that k is mapped to v. The dictionary d is not modified.

dict_t<‘a,‘b> insert_new(dict_t<‘a,‘b> d,‘a k,‘b v);

insert_new(d,k,v) is like insert(d,k,v), except that it throws
Present if k is already mapped to some value in d.

dict_t<‘a,‘b> inserts(dict_t<‘a,‘b> d,list_t<$(‘a,‘b) @@aqual(‘EQ6222)> l);

inserts(d,l) inserts each key, value pair into d, returning the result-
ing dictionary.

dict_t<‘a,‘b> singleton(int (@@aqual(‘EQ6225) cmp)(‘a,
‘a),

‘a k,‘b v);

singleton(cmp,k,v) returns a new heap-allocated dictionary with
a single mapping, from k to v.

‘b lookup(dict_t<‘a,‘b> d,‘a k);

lookup(d,k) returns the value associated with key k in d, or throws
Absent if k is not mapped to any value.

Core::opt_t<‘b> lookup_opt(dict_t<‘a,‘b> d,‘a k);

lookup_opt(d,k) returns NULL if k is not mapped to any value in d,
and returns a non-NULL, heap-allocated option containing the value k
is mapped to in d otherwise.
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dict_t<‘a,‘b> delete(dict_t<‘a,‘b> d,‘a k);

delete(d,k) returns a dictionary with the same bindings as d, except
that any binding of k is removed. The resulting dictionary is allocated
on the heap.

dict_t<‘a,‘b> delete_present(dict_t<‘a,‘b> d,‘a k);

delete_present(d,k) is like delete(d,k), except that Absent is
thrown if k has no binding in d.

‘c fold(‘c (@ f)(‘a,‘b,‘c),dict_t<‘a,‘b> d,‘c accum);

If d has keys k1 through kn mapping to values v1 through vn, then
fold(f,d,accum) returns f(k1,v1,...f(kn,vn,accum)...).

‘c fold_c(‘c (@ f)(‘d,‘a,‘b,‘c),‘d env,dict_t<‘a,‘b> d,
‘c accum);

fold_c(f,env,d,accum) is like fold(f,d,accum) except that f
takes closure env as its first argument.

void app(‘c (@ f)(‘a,‘b),dict_t<‘a,‘b> d);

app(f,d) applies f to every key/value pair in d; the results of the
applications are discarded. Note that f cannot return void.

void app_c(‘c (@ f)(‘d,‘a,‘b),‘d env,dict_t<‘a,‘b> d);

app_c(f,env,d) is like app(f,d) except that f takes closure env as
its first argument.

void iter(void (@ f)(‘a,‘b),dict_t<‘a,‘b> d);

iter(f,d) is like app(f,d) except that f returns void.

void iter_c(void (@ f)(‘c,‘a,‘b),‘c env,dict_t<‘a,‘b> d);

iter_c(f,env,d) is like app_c(f,env,d) except that f returns
void.

dict_t<‘a,‘c> map(‘c (@ f)(‘b),dict_t<‘a,‘b> d);

map(f,d) applies f to each value in d, and returns a new dictionary
with the results as values: for every binding of a key k to a value v in
d, the result binds k to f(v). The returned dictionary is allocated on
the heap.
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dict_t<‘a,‘c> map_c(‘c (@ f)(‘d,‘b),‘d env,dict_t<‘a,
‘b> d);

map_c(f,env,d) is like map(f,d) except that f takes a closure env
as its first argument.

$(‘a,‘b) @@aqual(‘EQ6237) choose(dict_t<‘a,‘b> d);

choose(d) returns a key/value pair from d; if d is empty, Absent is
thrown. The resulting pair is allocated on the heap.

list_t<$(‘a,‘b) @@aqual(‘EQ6241)> to_list(dict_t<‘a,
‘b> d);

to_list(d) returns a list of the key/value pairs in d, allocated on the
heap.

C.18 <xarray.h>

Defines namespace Xarray, which implements a datatype of extensible ar-
rays.
typedef struct Xarray<‘a> @@aqual(‘EQ6247)‘r xarray_t<‘a,

‘r>;

An xarray_t is an extensible array.

int length(xarray_t<‘a>);

length(a) returns the length of extensible array a.

‘a get(xarray_t<‘a>,int);

get(a,n) returns the nth element of a, or throws Invalid_argument
if n is out of range.

void set(xarray_t<‘a>,int,‘a);

set(a,n,v) sets the nth element of a to v, or throws Invalid_-
argument if n is out of range.

xarray_t<‘a> create(int,‘a);

create(n,v) returns a new extensible array with starting size n and
default value v.
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xarray_t<‘a,‘r> rcreate(region_t<‘r>,int,‘a);

rcreate(r,n,v) returns a new extensible array with starting size n
and default value v in region r.

xarray_t<‘a> create_empty();

create_empty() returns a new extensible array with starting size 0.

xarray_t<‘a,‘r> rcreate_empty(region_t<‘r>);

rcreate_empty(r) returns a new extensible array with starting size
0 in region r.

xarray_t<‘a> singleton(int,‘a);

singleton(n,v) returns a new extensible array with a single ele-
ment v.

xarray_t<‘a,‘r> rsingleton(region_t<‘r>,int,‘a);

rsingleton(r,n,v) returns a new extensible array with a single el-
ement v in region r.

void add(xarray_t<‘a>,‘a);

add(a,v) makes the extensible array larger by adding v to the end.

int add_ind(xarray_t<‘a>,‘a);

add_ind(a,v) makes a larger by adding v to the end, and returns v.

‘a ?@aqual(‘EQ6251) to_array(xarray_t<‘a>);

to_array(a) returns a normal (non-extensible) array with the same
elements as a.

‘a ?@aqual(‘EQ6254)‘r rto_array(region_t<‘r>,xarray_t<‘a>);

rto_array(a,r) returns a normal (non-extensible) array with the
same elements as a allocated in region r.

xarray_t<‘a> from_array(‘a ?@aqual(‘EQ6258) arr);

from_array(a) returns an extensible array with the same elements
as the normal (non-extensible) array a.
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xarray_t<‘a,‘r> rfrom_array(region_t<‘r>,‘a ?@aqual(‘EQ6262) arr);

rfrom_array(r,a) returns an extensible array with the same ele-
ments as the normal (non-extensible) array a, allocated in region r.

xarray_t<‘a> append(xarray_t<‘a>,xarray_t<‘a>);

append(a1,a2) returns a new extensible array whose elements are
the elements of a1 followed by a2. The inputs a1 and a2 are not mod-
ified.

xarray_t<‘a,‘r> rappend(region_t<‘r>,xarray_t<‘a>,xarray_t<‘a>);

rappend(r,a1,a2) returns a new extensible array whose elements
are the elements of a1 followed by a2, allocated in region r. The inputs
a1 and a2 are not modified.

void app(‘b (@ f)(‘a),xarray_t<‘a>);

app(f,a) applies f to each element of a, in order from lowest to high-
est. Note that f returns ‘a, unlike with iter.

void app_c(‘b (@ f)(‘c,‘a),‘c,xarray_t<‘a>);

app_c(f,e,a) applies f to e and each element of a, in order from
lowest to highest.

void iter(void (@ f)(‘a),xarray_t<‘a>);

iter(f,a) applies f to each element of a, in order from lowest to
highest. Note that f returns void, unlike with app.

void iter_c(void (@ f)(‘b,‘a),‘b,xarray_t<‘a>);

iter_c(f,e,a) applies f to e and each element of a, in order from
lowest to highest.

xarray_t<‘b> map(‘b (@ f)(‘a),xarray_t<‘a>);

map(f,a) returns a new extensible array whose elements are obtained
by applying f to each element of a.

xarray_t<‘b,‘r> rmap(region_t<‘r>,‘b (@ f)(‘a),xarray_t<‘a>);

rmap(r,f,a) returns a new extensible array whose elements are ob-
tained by applying f to each element of a, and allocated in region r.
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xarray_t<‘b> map_c(‘b (@ f)(‘c,‘a),‘c,xarray_t<‘a>);

map_c(f,e,a) returns a new extensible array whose elements are ob-
tained by applying f to e and each element of a.

xarray_t<‘b,‘r> rmap_c(region_t<‘r>,‘b (@ f)(‘c,‘a),
‘c,xarray_t<‘a>);

rmap_c(r,f,e,a) returns a new extensible array whose elements are
obtained by applying f to e and each element of a. The result is allo-
cated in region r.

void reuse(xarray_t<‘a> xarr);

reuse(a) sets the number of elements of a to zero, but does not free
the underlying array.

void delete(xarray_t<‘a> xarr,int num);

delete(a,n) deletes the last n elements of a.

void remove(xarray_t<‘a> xarr,int i);

remove(a,i) removes the element at position i from a; elements at
positions greater than i are moved down one position.

D Grammar

This section is out-of-date.
The grammar of Cyclone is derived from ISO C99. It has the following

additional keywords: abstract, alias, as, calloc, catch, datatype,
dynregion_t, export, fallthru, inject, let, malloc, namespace,
new, NULL, numelts, offsetof, rcalloc, region_t, region, regions,
reset_region, rmalloc, rnew, tagcheck, tag_t, throw, try, using,
valueof, valueof_t. As in gcc, __attribute__ is reserved as well.

The non-terminals character-constant, floating-constant, identifier, integer-
constant, string, and typedef-name are defined lexically as in C. A type-var is
defined as a C identifier preceded by a ‘ (backquote), optionally followed
by ::kind.

The start symbol is translation-unit.
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translation-unit:
(empty)
external-declaration translation-unitopt
using identifier ; translation-unit
namespace identifier ; translation-unit
using identifier { translation-unit } translation-unit
namespace identifier { translation-unit } translation-unit
extern "C" { translation-unit } translation-unit
extern "C include" { translation-unit } translation-unit

external-declaration:
function-definition
declaration

function-definition:
declaration-specifiersopt declarator
declaration-listopt compound-statement

declaration:
declaration-specifiers init-declarator-listopt ;
let pattern = expression ;
let identifier-list ;
resetableopt region < type-var > identifier ;
resetableopt region identifier ;
resetableopt region identifier = ( expression ) ;
alias < type-var > identifier = expression ;

declaration-list:
declaration
declaration-list declaration

declaration-specifiers:
storage-class-specifier declaration-specifiersopt

type-specifier declaration-specifiersopt

type-qualifier declaration-specifiersopt

function-specifier declaration-specifiersopt

storage-class-specifier:
auto
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register
static
extern
extern "C"
typedef
abstract

type-specifier:
_
_::kind
void
char
short
int
long
float
double
signed
unsigned
enum-specifier
struct-or-union-specifier
datatype-specifier
type-var
$( parameter-list )
region_t
region_t < any-type-name >
dynregion_t < any-type-name >
dynregion_t < any-type-name, any-type-name >
tag_t
tag_t < any-type-name >
valueof_t ( expression )
typedef-name type-paramsopt

kind:
identifier
typedef-name

type-qualifier:
const
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restrict
volatile
@numelts ( assignment-expression )
@region ( any-type-name )
@thin
@fat
@zeroterm
@nozeroterm
@notnull
@nullable

enum-specifier:
enum identifieropt { enum-declaration-list }
enum identifier

enum-field:
identifier
identifier = constant-expression

enum-declaration-list:
enum-field
enum-field , enum-declaration-list

function-specifier:
inline

struct-or-union-specifier:
struct-or-union { struct-declaration-list }
struct-or-union identifier type-paramsopt { struct-declaration-list }
struct-or-union identifier type-paramsopt

type-params:
< type-name-list >

struct-or-union:
struct
union
@tagged union
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struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

struct-declaration:
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:
type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-listopt

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declaratoropt : constant-expression

datatype-specifier:
@extensibleopt datatype identifier type-paramsopt { datatypefield-
list }
@extensibleopt datatype identifier type-paramsopt

@extensibleopt datatype identifier . identifier type-paramsopt

datatypefield-list:
datatypefield
datatypefield ;
datatypefield , datatypefield-list
datatypefield ; datatypefield-list
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datatypefield-scope: one of
extern static

datatypefield:
datatypefield-scopeopt identifier
datatypefield-scopeopt identifier ( parameter-list )

declarator:
pointeropt direct-declarator

direct-declarator:
identifier
( declarator )
direct-declarator [ assignment-expressionopt ] zeroterm-qualifieropt

direct-declarator ( parameter-type-list )
direct-declarator ( effectopt region-orderopt )
direct-declarator ( identifier-listopt )
direct-declarator < type-name-list >

effect:
; effect-set

region-order:
: region-order-list

region-order-list:
atomic-effect > type-var
atomic-effect > type-var, region-order-list

zeroterm-qualifier: one of
@zeroterm @nozeroterm

pointer:
* rangeopt regionopt type-qualifier-listopt pointeropt

@ rangeopt regionopt type-qualifier-listopt pointeropt

? regionopt type-qualifier-listopt pointeropt

range:
{ assignment-expression }
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region:
_
type-var

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list effectopt region-orderopt

parameter-list , ... effectopt region-orderopt

... injectopt parameter-declaration effectopt region-orderopt

parameter-list , ... injectopt parameter-declaration effectopt region-
orderopt

effect-set:
atomic-effect
atomic-effect + effect-set

atomic-effect:
{ }
{ region-set }
type-var
regions ( any-type-name )

region-set:
type-var
type-var , region-set

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
specifier-qualifier-list declarator
specifier-qualifier-list abstract-declaratoropt

identifier-list:
identifier
identifier-list , identifier
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initializer:
assignment-expression
array-initializer

array-initializer:
{ initializer-listopt }
{ initializer-list , }
{ for identifier < expression : expression }

initializer-list:
designationopt initializer
initializer-list , designationopt initializer

designation:
designator-list =

designator-list:
designator
designator-list designator

designator:
[ constant-expression ]
. identifier

type-name:
specifier-qualifier-list abstract-declaratoropt

any-type-name:
type-name
{ }
{ region-set }
any-type-name + atomic-effect

type-name-list:
any-type-name
type-name-list , type-name

abstract-declarator:
pointer
pointeropt direct-abstract-declarator
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direct-abstract-declarator:
( abstract-declarator )
direct-abstract-declaratoropt [ assignment-expressionopt ]zeroterm-qualifieropt

direct-abstract-declaratoropt ( parameter-type-listopt )
direct-abstract-declaratoropt ( effectopt region-orderopt )
direct-abstract-declarator < type-name-list >

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
reset_region ( expression ) ;

labeled-statement:
identifier : statement

expression-statement:
expressionopt ;

compound-statement:
{ block-item-listopt }

block-item-list:
block-item
block-item block-item-list

block-item:
declaration
statement

selection-statement:
if ( expression ) statement
if ( expression ) statement else statement
switch ( expression ) { switch-clauses }
try statement catch { switch-clauses }
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switch-clauses:
(empty)
default : block-item-list
case pattern : block-item-listopt switch-clauses
case pattern && expression : block-item-listopt switch-clauses

iteration-statement:
while ( expression ) statement
do statement while ( expression ) ;
for ( expressionopt ; expressionopt ; expressionopt ) statement
for ( declaration expressionopt ; expressionopt ) statement

jump-statement:
goto identifier ;
continue ;
break ;
return ;
return expression ;
fallthru ;
fallthru ( argument-expression-listopt ) ;

pattern:
_
( pattern )
integer-constant
- integer-constant
floating-constant
character-constant
NULL
identifier
identifier type-paramsopt ( tuple-pattern-list )
$ ( tuple-pattern-list )
identifier ( tuple-pattern-list )
identifieropt { type-paramsopt field-pattern-listopt }
& pattern
* identifier
identifier as pattern
identifier < type-var >
identifier < _ >
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tuple-pattern-list:
...
pattern
pattern , tuple-pattern-list

field-pattern:
pattern
designation pattern

field-pattern-list:
...
field-pattern
field-pattern , field-pattern-list

expression:
assignment-expression
expression , assignment-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
unary-expression :=: assignment-expression

assignment-operator: one of
= *= /= %= += -= <<= >>= &= ˆ= |=

conditional-expression:
logical-or-expression
logical-or-expression ? expression : conditional-expression
throw conditional-expression
new array-initializer
new logical-or-expression
rnew ( expression ) array-initializer
rnew ( expression ) logical-or-expression

constant-expression:
conditional-expression

logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression
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logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

exclusive-or-expression:
and-expression
exclusive-or-expression ˆ and-expression

and-expression:
equality-expression
and-expression & equality-expression

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
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multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

cast-expression:
unary-expression
( type-name ) cast-expression

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-name )
offsetof ( type-name , identifier )
offsetof ( type-name , integer-constant )
malloc ( assignment-expression )
rmalloc ( assignment-expression , assignment-expression )
calloc ( assignment-expression , sizeof ( type-name ) )
rcalloc ( assignment-expression , assignment-expression , sizeof (
type-name ) )
numelts ( assignment-expression )
tagcheck ( postfix-expression . identifier )
tagcheck ( postfix-expression -> identifier )
valueof ( type-name )

unary-operator: one of
& * + - ˜ !

postfix-expression:
primary-expression
postfix-expression [ expression ]
postfix-expression ( argument-expression-listopt )
postfix-expression . identifier
postfix-expression -> identifier
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postfix-expression ++
postfix-expression --
( type-name ) { initializer-list }
( type-name ) { initializer-list , }

primary-expression:
identifier
constant
string
( expression )
primary-expression <>
primary-expression @ < type-name-list >
$( argument-expression-list )
identifier { type-paramsopt initializer-list }
( { block-item-list } )

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

constant:
integer-constant
character-constant
floating-constant
NULL

E Installing Cyclone

Cyclone currently only runs on 32-bit machines. It has been tested on
Linux, Windows 98/NT/2K/XP using the Cygwin environment, and on
Mac OS X. Other platforms might or might not work. Right now, there are
a few 32-bit dependencies in the compiler, so the system will probably not
work on a 64-bit machine without major changes.

To install and use Cyclone, you’ll need to use the Gnu utilities, includ-
ing gcc (the Gnu C compiler) and Gnu-Make. For Windows, you should
first install the latest version of the Cygwin utilities to do the build, and
make sure that the Cygwin bin directory is on your path. We use some
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features of gcc extensively, so Cyclone definitely will not build with an-
other C compiler.

Cyclone is distributed as a compressed archive (a .tar.gz file). Unpack
the distribution into a directory; if you are installing Cyclone on a Win-
dows system, we suggest you choose c:/cyclone.

From here, follow the instructions in the INSTALL file included in the
distribution.

F Tools

F.1 The compiler

This section is out-of-date.

General options

The Cyclone compiler has the following command-line options:

-help Print a short description of the command-line options.

-v Print compilation stages verbosely.

–version Print version number and exit.

-o file Set the output file name to file.

-Dname Define a macro named name for preprocessing.

-Dname=defn Give macro name the definition defn in preprocessing.

-Bdir Add dir to the list of directories to search for special compiler files.

-Idir Add dir to the list of directories to search for include files.

-Ldir Add dir to the list of directories to search for libraries.

-llib Link library lib into the final executable.

-c Produce an object (.o) file instead of an executable; do not link.

-x language Specify language for the following input files
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-s Remove all symbol table and relocation information from the executable.

-O Optimize.

-O2 A higher level of optimization.

-O3 Even more optimization.

-p Compile for profiling with the prof tool.

-pg Compile for profiling with the gprof tool.

-pa Compile for profiling with the aprof tool.

-S Stop after producing assembly code.

-M Produce dependencies for inclusion in a makefile.

-MG When producing dependencies assume missing files are generated.
Must be used with -M.

-MT file Make file be the target of any dependencies generated using the
-M flag.

-E Stop after preprocessing.

-nogc Don’t link in the garbage collector.

Developer options

In addition, the compiler has some options that are primarily of use to its
developers:

-g Compile for debugging. This is bulletproof for compiler developers, as
the debugging information reflects the C code that the Cyclone code
is compiled to, and not the Cyclone code itself. To have a look at
Cyclone code during debugging (but not very cleanly as of yet), also
pass in –lineno (see below).

-stopafter-parse Stop after parsing.

-stopafter-tc Stop after type checking.
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-stopafter-toc Stop after translation to C.

-ic Activate the link-checker.

-pp Pretty print.

-up Ugly print.

-tovc Avoid gcc extensions in the C output.

-save-temps Don’t delete temporary files.

-save-c Don’t delete temporary C files.

–lineno Insert #line directives in generated C code. This slows down
compilation, but helps debugging. Works best when also using -pp.

–nochecks Disable all null and array bounds checks (still uses “fat” rep-
resentation of ? pointers).

–nonullchecks Disable null checks.

–noboundschecks Disable array bounds checks (still uses “fat” represen-
tation of ? pointers).

-use-cpppath Indicate which preprocessor to use.

-no-cpp-precomp Disable smart preprocessing (mac only).

-nocyc Don’t add the implicit namespace Cyc to variable names in the C
output.

-noremoveunused Don’t remove externed variables that aren’t used.

-noexpandtypedefs Don’t expand typedefs in pretty printing.

-printalltvars Print all type variables (even implicit default effects).

-printallkinds Always print kinds of type variables.

-printfullevars Print full information for evars (type debugging).
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F.2 The lexer generator

F.3 The parser generator

F.4 The allocation profiler, aprof

To get a profile of the allocation behavior of a Cyclone program, follow
these steps:

1. Compile the program with the flag -pa. The resulting executable
will be compiled to record allocation behavior. It will also be linked
with a version of the standard library that records its allocation be-
havior. (If you get the message, “can’t find internal compiler file
libcyc_a.a,” then ask your system administrator to install the spe-
cial version of the library.)

2. Execute the program as normal. As it executes, it will write to a file
amon.out in the current working directory; if the file exists before
execution, it will be overwritten.

3. Run the program aprof. This will examine amon.out and print a
report on the allocation behavior of the program.

F.5 The C interface tool, buildlib

buildlib is a tool that semi-automatically constructs a Cyclone interface
to C code. It scans C header files and builds Cyclone header files and stub
code so that Cyclone programs can call the C code. We use it to build the
Cyclone interface to the C standard library (in much the same way that
gcc uses the fixincludes program).

To use buildlib, you must construct a spec file that tells it what C
headers to scan, and what functions and constants to extract from the
headers. By convention, the names of spec files end in .cys. If spec.cys
is a spec file, then buildlib is invoked by

buildlib spec.cys

The output of buildlib is placed in a directory, BUILDLIB.OUT. The
output consists of Cyclone header files and the stub files cstubs.c and
cycstubs.cyc.
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Spec files

The form of a spec file is given by the following grammar.

spec-file:
(empty)
spec spec-file

spec:
header-name : directives ;

directives:
(empty)
directive directives

directive:
cpp { balanced-braces }
include { ids }
hstub idopt{ balanced-braces }
cycstub idopt{ balanced-braces }
cstub idopt{ balanced-braces }

ids:
(empty)
id balanced-braces* ids

The non-terminal id refers to C identifiers, and header-name ranges over
C header names (e.g., stdio.h, sys/types.h). We use balanced-braces
to refer to any sequence of C tokens with balanced braces, ignoring braces
inside of comments, strings, and character constants.

Directives

include The include directive is used to extract constants and type defini-
tions from C header files and put them into the equivalent Cyclone
header file. For example, here is part of the spec that we use to inter-
face to C’s errno.h:

errno.h:
include { E2BIG EACCES EADDRINUSE ... }
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The spec says that the Cyclone version of errno.h should use the C
definitions of error constants like E2BIG. These are typically macro-
defined as integers, but the integers can differ from system to system.
We ensure that Cyclone uses the right constants by running buildlib
on each system.

For another example, our spec for sys/types.h reads, in part:

sys/types.h:
include { id_t mode_t off_t pid_t ... }

Here the symbols are typedef names, and the result will be that the
Cyclone header file contains the typedefs that define id_t, etc. Again,
these can differ from system to system.

You can use include to obtain not just constants (macros) and type-
defs, but struct and union definitions as well. Furthermore, if a def-
inition you include requires any other definitions that you do not
explicitly include, those other definitions will be placed into the
Cyclone header too. Moreover, for all such definitions, you can in-
clude an optional, expected Cyclonedefinition that is “equivalent” to
the C definition on your system. By “equivalent,” we mean that your
definition defines all of the same elements as the system definition
(but possibly fewer), and each of these elements is “representation-
compatible” in the sense that they use the same amount of storage
when compiled. As example, here is our spec for grp.h:

include {
gid_t
group {

struct group {
char @gr_name;
char @gr_passwd;
gid_t gr_gid;
char ** @zeroterm gr_mem;

};
}

}
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This provides richer information than the compatible definition on
most systems. Here is the Linux definition:

struct group {
char *gr_name;
char *gr_passwd;
gid_t gr_gid;
char **gr_mem;

};

The user definition refines the system definition by indicating that
for group strings gr_name and gr_passwd must be non-NULL,
and indicates that the array of strings gr_mem, is null-terminated.
But note that the two definitions are representation-compatible in
that they have the same run-time storage requirements. The Cyclone
version provides more precise type information. You can provide
user definitions for enumerated types and typedef’s as well.

Some refinements (such as polymorphism), are not yet supported
for user definitions. Also, include does not work for variable or
function declarations. You have to use the hstub directive to add
variable and function declarations to your Cyclone header.

cstub The cstub directive adds code (the balanced-braces) to the C stub
file. If an optional id is used, then the code will be added to the stub
file only if the id is declared by the C header. This is useful because
every system defines a different subset of the C standard library.

cycstub The cycstub directive is like the cstub directive, except that the
code is added to the Cyclone stub file.

hstub The hstub directive is like the cstub directive, except that the
code is added to the Cyclone header file.

cpp The cpp directive is used to tell buildlib to scan some extra header
files before scanning the header file of the spec. This is useful when a
header file can’t be parsed in isolation. For example, the standard C
header sys/resource.h is supposed to define struct timeval,
but on some systems, this is defined in sys/types.h, which must
be included before sys/resource.h for that file to parse. This can
be handled with a spec like the following:
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sys/resource.h:
cpp {

#include <sys/types.h>
}
...

This will cause sys/types.h to be scanned by buildlib before
sys/resource.h.

You can also use the cpp directive to directly specify anything that
might appear in a C include file (e.g., macros).

Options

buildlib has the following options.

-d directory Use directory as the output directory instead of the default
BUILDLIB.OUT.

-gather and -finish buildlib works in two phases. In the gather phase,
buildlib grabs the C headers listed in the spec file from their nor-
mal locations in the C include tree, and stores them in a special for-
mat in the output directory. In the finish phase, buildlib uses the
specially formatted C headers to build the Cyclone headers and stub
files. The -gather flag tells buildlib to perform just the gather
phase, and the -finish flag tells it to perform just the finish phase.

buildlib’s two-phase strategy is intended to support cross com-
pilation. A Cyclone compiler on one architecture can compile to a
second architecture provided it has the other architecture’s Cyclone
header files. These headers can be generated on the first architecture
from the output of the gather phase on the second architecture. This
is more general than just having the second architecture’s Cyclone
headers, because it permits works even in the face of some changes
in the spec file or buildlib itself (which would change the other
architecture’s Cyclone headers).

-gatherscript The -gatherscript flag tells buildlib to output a shell
script that, when executed, performs buildlib’s gather phase. This
is useful when porting Cyclone to an unsupported architecture, where
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buildlib itself does not yet work. The script can be executed on
the unsupported architecture, and the result can be moved to a sup-
ported architecture, which can then cross-compile itself to the new
architecture.
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