
Initial Experience Porting Linux Device
Drivers to Cyclone

Nikhil Swamy Michael Hicks

June 29, 2007

1 Placeholder

1.1 8139too.cyc, a RealTek RTL-8139 Fast Ethernet
driver for Linux

1.1.1 Overview of driver behavior

• Module initialization

The module is initialized using the standard scheme for pci devices;
i.e, initialization using module init / module exit, with pci module init
called on a driver table that is statically partially populated. Similarly,
module exit just unregisters the pci driver.

Pci probing is done by rtl8139 init one. The function is registered as
a callback in the pci driver tables. The main components of device
probing are classified as follows:

1. Allocating the Ethernet Device

The ether device structure is colocated with the general net device
structure. The netdevice interface provides an ”alloc etherdev”
function that allocates space for both the ethernet device as well
as the net device. In the case of linux 2.6, the rules for allocat-
ing/deallocating a netdevice are pretty stringent. (See the notes
in Documentation/networking/netdevices.txt for allocation rules
for netdevs). This is primarily because of the introduction of sysfs

1

(/sys/class/net etc.) in 2.6 which can allow the module to be re-
moved while still holding an entry for that device in sysfs.

2. Initializing IO memory

The pci interface provides methods (resource start and resource end)
that return the range of bus addresses assigned to this device.
These addresses correspond to memory resident on the device,
and maybe thought of as the control registers of the device. This
memory is ioremapped (dma style) before being used by the driver.
The ioremapped address is what is stored in the drivers private
data structure.

3. Initializing Card State

The driver writes various values to the card registers, and reads the
resulting card state to discover information such as chip version,
clock speed etc. Once this has been done the state of the card is
initialized to some start state.

4. Populating Structures and Registration

Setting callbacks and fields on the netdevice structure, and in
the mii interface of the etherdevice (media independent interface)
takes place. The structures are registered with their respective
controllers i.e register net dev etc.

5. Failure Handling

In case of failure of any of these steps, a cleanup function releases
pci alocated io memory, unmaps any dma, and frees the allocated
netdevices etc.

• Post Initialization – Main Functional Path

After initialization the netdevice controller takes over the driver. The
functions registered in the netdevice structure serve as callbacks for the
netdevice structure. The functions are: open, start xmit, close,

stats, rx mode, ioctl, tx timeout. Each of these are described
here. See networking/netdevices.txt in the kernel documentation for
synchronization rules for each of these functions.

1. int rtl8139 open (net device t dev)

This routine is called by netdevice controller in the case of some-
thing like ”ifup eth0”. That makes this routine the main entry
point of the driver. Its functions are summarized below.

2

(a) Grab an irq line, and register an interrupt handler. In this
case the interrupt handler is rtl8139 interrupt. As with all
pci enabled devices, this is a shared irq line.

(b) Dma allocate io memory using pci alloc consistent. This mem-
ory is used for the transmit and receipt buffers – stashed in the
drivers private data, along with the control register addresses.
It is memory shared between the device and processor, and
both the raw bus address as well as the kernel virtual address
is returned by the pci method.

(c) Calls hw start. This function writes repeatedly to various
control registers. Also does some mii stuff to set modes etc.
This function finally calls netif start queue, which allows the
rest of the netdevice scheduler to proceed.

(d) Initializes a kernel thread which is an infinite loop that wakes
itself up periodically. It is used essentially to some fine tuning
of clocks, echo due to impedance of cables etc.

(e) In case of failure, tx/rx bufs are released. Irq line is returned.

2. int netdev ioctl(net device t dev, struct ifreq *rq, int cmd)

Once the card is initialized and scheduled properly, it can accept
requests from user space. This function allows for the testing
and setting of various parameters condition on the cmd and rq
parameters. This is also an entry point to the underlying mii
interface.

The parameter rq is a pointer to user memory. The size of the
memory pointed to (the actual structure) is determined by the
first word of that memory. This tag word is the command that
is issued to the device. Depending on the value of the command,
values are either written to user space, or read from user space
into the device’s control registers, or both.

3. int rtl8139 start xmit (struct sk buff *skb, net device t dev)

Copies the socket buffer to the tx buf iomemory. Uses memset to
zero out the buffer first in some cases. More importantly, frees
the sk buff by calling dev kfree skb. In the case where the packet
is too big, it is freed anyway i.e the packet is dropped. The card
is notified of the packet awaiting transmission by writing to a
control register. In case of some failure by the card, the netdevice

3

is removed from the queue ... i.e it is effectively suspended. This
will result eventually in tx timeout being called.

4. void rtl8139 interrupt (int irq, net device t dev,
struct pt regs *regs)

This is the main interrupt handler, for all interrupts raised on this
driver’s irq line. It reads the interrupt status from a control regis-
ter. The status signals one of the following: transmit completion,
or transmit error; a packet receipt; some other error condition.

(a) In the case of a transmit interrupt the handler must clean up
after the tx thread. This cleanup simply logs errors if they
have occured, and updates the count of still outstanding tx
transactions.

(b) Error checking in the case of a receipt interrupt involves ensur-
ing that the size of the packet received is within an acceptable
range. Once this is confirmed, a socket buffer (sk buff) is allo-
cated using dev alloc skb. Data in the consistently allocated
rx bufs is copied to the sk buf using eth copy and sum which
is a variant of memset. The skb is then handed off to the net-
device interface using netif rx. Freeing the skb becomes the
responsibility of netif. This copy/skb-handoff process is re-
peated until the card’s rx buffer is empty.

(c) In the exceptional case, driver error counts are updated. In
the case of pci errors, the card status is updated.

5. void rtl8139 tx timeout (net device t dev)

Cancels all outstanding transactions. Disables interrupts. Restarts
hardware.

6. struct net device stats *rtl8139 get stats (net device t dev)

Returns accumulated statistics (error counts etc.)

7. int rtl8139 close (net device t dev)

Called in the case of “ifdown eth0” or something equivalent. It
removes the device from the netif scheduler. Kills the fine tuning
thread that was started by open. Clears interrupt masks for the
card. Relinquishes the interrupt line. Frees IO-memory in the
tx/rx buffers. Importantly, it does not release the iomemory for
the card’s control registers – i.e the ioremap’d bus start/end ob-
tained from the pci interface is not unmapped yet. That is, close

4

function does not mean that the module is to be removed. That
final step is performed by the following function.

8. void devexit rtl8139 remove one (pci dev t pdev)

This function is registered with the pci interface, and is called
when the module is unloaded. It iounmaps the control reg. mem-
ory, unregisters the netdev with the netif. And finally, it frees the
network devices allocated in the pci probe function.

1.1.2 Cyclone safety mechanisms

Several features of Cyclone were used to obtain a type-safe port of this driver.
1

1. Fat pointers for IO Memory

Much of the code in this driver consists of writing to iomemory. This
memory is acquired from the pci interface and then ioremapped to
kernel virtual addresses. The orginal C driver used the macros readb
and writeb to access these buffers. The signatures of these macros are
effectively

u8 readb(unsigned long ioaddr, unsigned offset);
void writeb(unsigned long ioaddr, unsigned offset, u8 val);

To guarantee the safety of the pointer arithmetic in these buffers, point-
ers to iomemory were implemented as fat pointers. Functions such as
pci resource start / pci resource end which allocate io-memory were
wrapped (see below) to return fat pointers instead.

The macros readb/writeb were replaced by inlined extern C functions
such as the following.

inline void CYC WRITEB(u8 ?@nozeroterm fat ioaddr, int offset, u8 val8){
void *ioaddr = fat ioaddr.base;
if(ioaddr + reg >= (void*)fat ioaddr.last plus one)

throw arraybounds();
writeb ((val8), ioaddr + (reg));

}
1This was the first driver we ported. As such, some of the techniques used were refined

for subsequent drivers. One glaring omission is the handling of the allocation and freeing
of the net device structure. A scheme to handle this better is outlined in Section ??.
But, at the time of writing, this has not yet been implemented.

5

Note that these functions are declared as extern ”C” and thus are not
typechecked by Cyclone. This is required since the function body still
uses writeb, which cannot be proved safe by Cyclone. The intention
is for such functions to be part of a trusted library of io utilities that
are provided with Cyclone for the development of kernel modules.

2. Dependent Types for tx/rx Buffers

Fat pointers were used primarily for io-memory that is resident on the
card. Processor/device shared buffers that are allocated by pci alloc consistent
(or some other consistent DMA scheme), were instead represented
using dependent types. Such memory is not accessed to using the
readb/writeb scheme.

For instance, in the case of the transmission buffers, a large chunk
of memory is allocated. This is then split into a number of smaller
chunks of equal size, one for each of several transmission buffers that
the driver allows to be filled concurrently. Accesses to these buffers
are done using functions such as memset, where it is sufficient to prove
that the size of the memory being copied is no bigger than the space of
the destination. In addition, by encoding these pointers as dependent
types several array bounds checks can be amortized into perhaps even
a single check.

The tx bufs and rx bufs have the following type:

typedef struct bounded iobuf {
<‘i::I>
u8 *valueof(‘i)@nozeroterm buf;
tag t<‘i> len;

} bnd buf t;

3. Wrappers for pci resource allocation

Pci resource allocation functions were wrapped by Cyclone functions so
that fat pointers, or dependent types can be safely manufactured from
them. For instance, the pci alloc consistent has the following wrapper:

bnd buf t pci alloc(pci dev t hwdev, size t tag, dma addr t *dma handle) {
u8 *virt addr = pci alloc consistent(hwdev, tag, dma handle);
bnd buf t res = bounded iobuf{.buf = virt addr, .len = tag};
return res;

}

6

From a bnd buf t it is easy to manufacture a fat pointer using the
standard Core::mkfat Cyclone library function. Alternatively, the de-
pendent type can be used directly to prove the safety of io pointer
dereferences.

4. Overriding Type Declarations

Many kernel data structures (such as net device) allow for a driver to
store a pointer to a private data structure within it. This is a classic
example of the use of the ”void *” type in C to encode parametric poly-
morphism. To eliminate the Cyclone unsupported downcast from void*
to the expected private data type, a number of kernel data structures
had to explicitly be declared polymorphic. For instance, the net device
structure was declared as follows:

struct net device <‘a::A> {
...
‘a *priv;
...
struct net device<‘a> *next;
...
int (*open)(struct net device<‘a> *dev);
...

};

Here, the ”priv” field is a pointer to the driver’s private data. The
declaration of the function pointer field ”open” is also suitably updated
so that in the driver function ”rtl8139 open” we can safely eliminate
the downcast of ”priv” from ”void*”.

Note however the type of the field ”next” is inaccurate, since the next
network device in the chain of devices is, most likely, controlled by some
other driver which will instantiate the ”priv” field differently. However,
this next field is never accessed by any driver. Thus we can maintain
the illusion of a homogenous list safely.

The number of types that had to be overridden in this manner was
quite large. These included the pci dev and its related structuers, the
structures related to the mii interface.

Other types were overridden too. Examples of these include adding
requires clauses to functions such as memset to ensure that the buffers

7

being copied were of appropriate size. Non-null checks were imposed
by overriding function declaration to contain “@” pointers instead of
“*” pointers etc.

5. Regions for Short-lived Allocations

There were some cases in the ioctl routines that heap allocated short-
lived data structures. These were instead replaced with lexical regions.
An alternative approach was to implement these using unique point-
ers, since this does not entail the additional cost of allocating an entire
region page. Both approaches were implemented.

6. Tagged Union for ioctl User Memory

It should be clear from the description of the ”netdev ioctl” function in
the previous section, that the natural representation of the user request
is as a tagged union. The C declaration of the type, however, does
not even represent the request as a normal union. The driver simply
examines the first word of the user space memory and conditional on
that word casts the pointer to some appropriate type. In this case,
the representation of the user-space allocated memory is completely
determined by an implicit definition of the protocol.

To support a type-safe implementation of this function, we had to pro-
vide a C function that would produce a Cyclone tagged union after
examining user-space memory. Once this tagged union was generated,
the rest of the ioctl could use the union in a type safe manner.

7. Wrapping Functions with cyc call Exception Handlers

Cyclone functions can throw exceptions. If a Cyclone function is called
from C without first installing an top-level exception handler, then the
stack unwinding process fails. Obviously, in case an uncaught exception
is thrown, the result is a kernel oops.

To avoid this, we must ensure that every Cyclone function in the driver
that is exposed directly to the kernel must never throw an exception.
In this driver, this was achieved by wrapping each Cyclone function
by a C function that explicitly installs a default exception handler.
For instance, the “rtl8139 open” is exposed to the kernel since it is
registered as a callback with the netdevice interface.

8

1.1.3 Cyclone modifications/enhancements

1. Overriding Type Declarations As described in the previous section, a
considerable proportion of the changes made to the C driver involved
assigning a meaningful Cyclone type to C type declarations. For this
purpose, the Cyclone language was equipped with the construct illus-
trated in Figure ??.

The block of code within the extern ‘‘C include’’ contains the C
declarations that are to be imported for use in the Cyclone program.
The cyclone override block allows the user to modify the C type
declaration. The Cyclone compiler ensures that the overridden type is
representation consistent with the original C declaration.

In this case, a polymorphic type variable has been introduced in the
declaration of net device. The introduction of this variable has an
impact on the declaration of other C types too. For instance, the
function netif start queue must be updated to reflect the new type
variable. Similarly, the structure mii info must also be updated to
reflect the type variable that now appears in its dev field. Cyclone
now supports two methods of reflecting these new type variables in the
hierarchy of type declarations.

In the first mode (the default) Cyclone updates the declarations using
a form of “most-general” type variable inference. In this case, the
updates would be as follows:

struct mii info<‘a::A> {
int phy id;
struct net device<‘a> *dev;
struct mii info<‘a> *next;

};
extern int netif start queue(struct net device<‘a> *dev);

Note here how recursive fields (mii info.next) are restricted to have
the same type variable with the same identity as the enclosing declara-
tion. The algorithm for introducing these type variables is a worklist
style method that iterates until a fixed point is reached. Mutually re-
cursive data structures do, however, pose a problem. This method of
type variable introduction is provided as a convenience to the user to
minimize the tedious manual annotation of types. For this reason, in

9

extern ‘‘C include’’ {
typedef unsigned char u8;
struct net device {

void *priv;
struct net device *next;
int (*open)(struct net device *dev);

};
struct mii info {

int phy id;
struct net device *dev;
struct mii info *next;

};
extern int netif start queue(struct net device *dev);
extern void memcpy wrapper(u8 *src, u8 *dst, unsigned int len);
extern void* kmalloc(unsigned int);
extern void kfree(void*);

}
cyclone override {
struct net device<‘a::A> {

‘a *priv;
struct net device<‘a> *next;
int (*open)(struct net device<‘a> *dev);

};
extern void memcpy wrapper(u8 *{valueof(‘n)} src,

u8 *{valueof(‘m)} dst,
unsigned int len)
@requires((len < numelts(src)) &&

(len < numelts(dst)));
}
export { * }
cyclone hide { kmalloc, kfree }

Figure 1: A Cyclone Mechanism for Importing C Declarations

10

the case of mutual recursion, Cyclone rejects the program with a noti-
fication of the set of the types that form a cycle. The user then must
manually annotate the declarations that are mutually recursive with
the appropriate type variables.

In the second mode, (activated by the command line switch --cifc-inst-tvar)
Cyclone adopts a “least-general” approach to introducing type vari-
ables. It is possible that (as illustrated in subsequent drivers) the
most-general approach results in the introduction of too many type
variables. In such cases, the least-general approach will instantiate
each type-variabl with a default value of a suitable kind. In the case of
our example, the result is as follows:

struct mii info {
int phy id;
struct net device<void*> *dev;
struct mii info *next;

};
extern int netif start queue(struct net device<void*> *dev);

Note that arbitrary type overrides are possible as long as they are
representation consistent. For example, the type of memcpy override is
overridden to reflect the necessary bounds information using Cyclone’s
framework for pre- and post-conditions.

2. Asm expressions

The gcc compiler supports inlined assembly instructions within C code.
The linux kernel makes heavy use of this feature. Although inherently
unsafe, we needed to support this feature to be able to write kernel
code. The Cyclone parser and binding phase were modified to allow
for gcc style assembly instructions within Cyclone.

3. Miscellany

A number of small features that are supported by the C99 standard
needed to be added to Cyclone. These included features such as com-
pound literals, (some others too...)

4. Cyclone runtime support

11

A cyclone driver requires a number of runtime services. These in-
clude features such as exception handling, array bounds checking, re-
gion based memory allocation, etc. The section on the cyclone runtime
driver specifies in detail the services that are available to a a cyclone
driver.

1.1.4 Open Issues / Cyclone enhancements required

1. A Capability Based Allocation Mechanism

Consider the case of the allocation of a net device . The interface
requires that the network device be allocated using the following func-
tion.

struct net device *alloc etherdev(unsigned int sizeof priv);

This function allocates a net device structure with enough space for
the private data that will be stored within the net device structure. In
recent versions of the kernel (2.6+), network devices are also expected
to be freed using a complementary function free netdev. Thus the
allocation routines for this kind of structure are beyond the control
of a standalone cyclone driver – i.e, it is not possible to allocate this
net device structure as a reference counted object, since we cannot
allocate the additional header word required for the reference count.
Nor can we treat this object as a unique pointer, since clearly many
aliases to this object are maintained (within the pci device, the mii
structures, the network interface structures etc.).

For this kind of long lived data object that admits multiple aliases,
one typical Cyclone solution is to use dynamic regions. In this case,
allocation within the region page assigned to the dynamic region is
not possible, since the allocation itself is performed outside of Cyclone.
One approach to obtaining a type-safe mechanism to support this idiom
might be to use the capability system that comes with the dynamic
region system, while not using the en-masse allocation scheme that
is typical of regions. Such an allocation scheme might look like the
following:

12

extern ‘‘C include’’
struct net device *‘r cyc alloc etherdev(unsigned int privsz,

region key<‘r> *‘U key) {
return alloc etherdev(privsz);

}
void cyc free etherdev(struct net device *‘r dev,

region key<‘r> *‘U key)
attribute ((consume(1, 2))){

free etherdev(dev);
}
export { * }

Here the standard heap-allocation mechanism of alloc etherdev is
augmented by a unique capability that is required to access the allo-
cated data. Freeing the device consumes both the key and the device,
thus preventing it from further use by the driver. Note that the region
key here has no runtime significance at all.

2. Reading/writing non-pointer values

The driver acquires io-memory as a pointer to an array of char (say,
unsigned char ?@nozeroterm). This array can represents registers
that reside on the device. A particular register might be a byte register,
or a word, or even a double word register. Reading or writing to such
registers is inconvenient in Cyclone, although it is possible to do in a
typesafe manner. For instance, the following function safely reads a
u16 from a u8*.

extern ‘‘C include’’ {
u16* read u16 from u8(u8 *x, int offset, int bound) {

if(offset + sizeof(u16) > bound)
throw arraybounds();

return *((u16*)(x+offset));
}

}
cyclone override {

u16@‘H read u16 from u8(u8*valueof(‘n)@nozeroterm x,
int offset, int bound)

@requires((bound == numelts(x)) && (offset < numelts(x)));
}

13

Cyclone already allows non-tagged unions as long as the only values
that are ever read from the union are not of pointer type. This restric-
tion ensures that a pointer cannot be manufactured from an integer.
Instead of using this somewhat unwieldy library function, it should be
possible to read and write non-pointer values of a various sizes from an
fat-pointer.

3. Declarative scheme for tagged unions

The netdev ioctl function makes use of a pointer to user-space that
logically is identical to a tagged-union. The first word of the memory
is a tag that refers to the contents of the remainder of the memory.
To support this in Cyclone required writing unsafe C code that per-
formed the conversion between this implicit tagged union and Cyclone’s
tagged-union. This process is error prone and perhaps should not be
exposed to the driver developer.

An alternative approach might be to modify the Cyclone code generator
such that the representation of a tagged union is specified declaratively.
Such a declaration may take the following form:

tagged union layout(id=ifr data)
tag:(offset=0, size=4); /* specifies the location and size of the tag*/
match tag with /*specifies the relation between tag and content*/

ETHTOOL NWAY RST -> int
ETHTOOL GDRVINFO -> struct ethtool drvinfo*
ETHTOOL GSET -> struct ethtool cmd*
ETHTOOL GSTATS -> struct ethtool stats*
-> err

;
/*original C declaration augmented with an attribute*/
struct ifreq {
...
char * ifr data attribute ((tagged union layout(id=ifr data)));
..

};

As with other type overrides, we could accumulate a library of such
tagged union descriptors. This would allow the driver developer to
treat such implicit tagged unions as normal tagged unions without any
unsafe conversion functions.

14

4. Flow analysis with asm expressions

The current support for asm expressions is only rudimentary. A first
step might be to include asm expressions in the flow analysis to ensure
that variables are initialized etc.

1.2 Cyclone Runtime Module

Several features of the Cyclone program language rely on runtime support.
These features are summarized as follows.

1. Array Bounds Checks

Type safety for array indexing and pointer arithmetic operations are
ensured by the insertion of runtime checks. Cyclone has several mech-
anisms that are used for encoding the length of an array. Among those
that require runtime checks are fat pointers and zero-terminated point-
ers. In the first case, pointers to the start and end of the array are
explicitly maintained. In the second case, the last element of the array
is required to be zero. Assignments through zero-terminated point-
ers must ensure that the terminating zero is not overwritten. Thise
assurance is provided by means of runtime checks.

2. Not-null checks

Pointers in Cyclone may be qualified as non-null. Obviously, assign-
ments to such pointers must ensure that null is never written.

3. Exception Handling

Linux kernel code does not support exceptions, even if they are of
the C++ variety. As described in the previous section, care must be
taken to ensure that a Cyclone exception is never reaches the context
of a C function. Exceptions in Cyclone do, however, provide a natural
mechanism for error-handling. The Cyclone libraries make extensive
use of exceptions too (including the runtime checks described above).
Thus, we allow Cyclone kernel code to use exceptions. Runtime support
for exceptions involves setting handlers and, in case an exception is
thrown, unwinding the stack to the context to the appropriate handler.

4. Memory Management

15

Cyclone provides safe memory management using several techniques.
The runtime support, if any, for each of these is described below.

(a) Garbage Collection

Cyclone uses the BDW conservative collector. A GC enabled Cy-
clone program must be linked against this collector. While in prin-
ciple it is possible for a Cyclone kernel module to use a garbage
collector, this is in most cases undesirable. If a driver must use
garbage collection, this GC library would be part of the cyclone
runtime services.

(b) Unique Pointers

Alias-free affine pointers allow for safe manual memory manage-
ment – i.e malloc and free. The support for this is based solely on
a static analysis and requires no runtime support.

(c) Reference-counted Pointers

The allocator for reference counted objects reserves an additional
word of header space in which to maintain the reference count. In-
crementing and dropping reference counts (and free-ing the mem-
ory when the reference count reaches zero) is also achieved by
means of runtime functions.

(d) Lexical and Dynamic Regions

Allocating a region page, freeing a region, and allocating individ-
ual objects within a region all require runtime support. Region
pages are allocated using the GFP KERNEL mode of the kmalloc

allocator.

In some cases, drivers may wish to allocate pages using vmalloc

instead. This method of allocation is preferred when allocating
large portions of memory and results in a linear array of kernel
virtual addresses. Such a mode of allocation maybe be used when,
say, a video driver allocates its frame buffers. To handle such
cases, the Cyclone languages now provides the following function:

void* rvmalloc(struct RegionHandle *r, size t len);

This function allocates the smallest multiple of 4096 greater than
len bytes using vmalloc. Cyclone associates the allocated pages
with the regions handle and frees the memory (using vfree) when
the region is freed.

16

1.2.1 Thread Safety

There are a number of issues that make Cyclone unsafe when used in a
multi-threaded setting. Most of these issues arise as a result of non-atomic
multiword copies (say in the case of fat pointers, or existential types). There
are also issues with aliasabilities and shared region handles.

Placing many of these issues aside for now, we permit Cyclone to be
used with threads and provide support for multiple runtime stacks. Cyclone
applications in user-mode user posix thread support for thread local storage
to maintain. Posix-threads are not available in the kernel. To provide thread
local storage we use the following scheme.

The Cyclone runtime module maintains a hash-table mapping thread-ids
to stack allocated storage for that thread. When a C function calls into a
Cyclone function, we expect the C function to stack allocate a record of the
following type:

struct tls record {
struct RuntimeStack *current frame;
struct xtunion struct *exn thrown;
const char *exn filename;
int exn lineno;

};
typedef struct tls record tls record t;
struct tls slot {

unsigned int pid;
unsigned int usage count;
tls record t *record;

};
typedef struct tls slot tls slot t;

Here struct tls slot represents a single entry in the hash-table map-
ping the thread’s pid to a record that contains the threads stack information.
This record is maintained only for the portion of the thread’s lifetime that
is spent in a Cyclone context. Once the Cyclone function returns to its C
caller, this piece of stack allocated data can is released.

1.2.2 The cyc runtime Module

All the runtime services described here are packaged as a kernel module. This
module must be loaded prior to the loading of any other Cyclone module.

17

1.3 Intel i810 and friends ICH driver for Linux

1.3.1 Overview of driver behavior

• Module initialization

The i810 driver is a pci enabled driver. It initializes itself by call-
ing pci register driver directly, as opposed to the more standard
pci module init. Device probing is implemented by the function
i810 probe. The actions taken by this function are as follows.

1. Pre-initialization

Wakes up the device using pci enable device, and attempts to
set a dma mask for future consistent dma allocation.

2. Allocating Card and IO Memory

Allocates an i810 card and grabs pci resources; i.e. pci bus start
and end addresses for the ac97 codec, and for the audio card
itself. If memory mapped IO is available, it grabs two further
pci resources and ioremap’s the addresses. Most, though not all
(suspicious ... figure out why) subsequent accesses of io memory
perform a check to decide whether or not the memory-mapped ad-
dresses are valid. The allocated card is linked into a driver static
variable that maintains a list of cards.

3. Allocating DMA Channels

Consistently allocates three hardware channels (struct i810 channel),
each of which is dma based. The driver is intended to support
playback only, although the card itself does recording too. The
recording support in the driver is incomplete. These channel ob-
jects contain the static information regarding port numbers etc.
for each hardware channel. As such, after initialization they are
read only.

4. Codec Initialization

Initializes the AC97 codec. This codec represents the audio con-
trol mixer. Initialization involves powering up the codec bus by
writing to the io-registers grabbed from the pci resource interface
previously. Space for the codec structure (struct ac97 codec)
is allocated. The ac97 interface’s ac97 probe function is called
which initializes the codec structure appropriately. The functions

18

associated with the mixer (volume control etc.) are registered
with the sound subsystem using register sound mixer.

5. Registering Device Functions

An irq line is grabbed for the card. The sound device (/dev/dsp)
is registered with the sound interface (register sound dsp) by
passing in a table of file operations associated with the device.
These operations correspond to reading, writing, opening files and
ioctl for the device.

6. Failure Handling

Failure at various points in the initialization is handled by a set of
cleanup labels that are jumped to from the various failure points.
Cleanup involves unmapping io-memory, releasing irq lines, freeing
allocated cards, channels, etc.

• Post Initialization – Main Functional Path

Playing an audio file is controlled by the functions registered as dsp
functions with the sound system. The sound system uses the standard
file system interface. The behavior of each the file operations in the
context of this card is described below.

1. Open

int i810 open(struct inode *inode, file state t file)

This function is the main entry point into the driver. The inode

argument is ignored. The responsibility of this function is to set
up a state object associated with the file being played. A reference
to the card is obtained from the global list of cards. Each card is
examined for an available channel – recall that the card supports
at most three hardware channels. Once a card with a free channel
is found, a state object struct i810 state is allocated. This ob-
ject is the logical channel that corresponds to an in-use hardware
channel.

The state object is at the heart of an intricate alias graph. The
state object maintains a reference to its containing struct i810 card

object, which in turn has references to each of its open states. Re-
call that a ref to the card is also maintained in a global list data
structure. A reference to the state is also stashed in the file object.

19

This function also does some clock rate tuning.

2. Write

ssize t i810 write(file state t file,
char *valueof(‘i) @nozeroterm buffer,
tag t<‘i> bufsize, loff t *ppos)

After the state initialization performed by the open function, the
task of writing data to the device falls upon this function. Writing
the file to the device is achieved using a dma scheme that is closely
tied to the physical device.

The struct i810 channel object, as noted earlier, corresponds
to a hardware channel. This channel is dma allocated (using con-
sistent allocation). The exact layout of this object is important
as the i810 card relies on this to access the data buffers copied to
and from it. The struct sg item object is a pair of addresses,
the first of which is the bus address of dma allocated data buffers.

The hardware channel objects are allocated at module initializa-
tion. The bus addresses that is returned for this array of channels
is recorded in the chandma field of the card, but the device itself
is not notified of this dma address.

When a write (or read) system call occurs, data buffers need to
be set up to to transfer the data to (from) the card. These data
buffers are also consistently allocated dma buffers that are main-
tained along with the struct i810 state object, the software
representation of a channel. A set of functions prog dmabuf,

alloc dmabuf etc. are dedicated to the handling of these dma
buffers. Once the dma buffers of an appropriate size are allocated,
the bus addresses of these buffers are copied into the sg item fields
of the hardware channel objects (i810 channel). It is only after
this step that the device is notified of the bus address of the hard-
ware channels; i.e. the chandma field is written to a device register.
Note that in this manner, the address of the dma data buffers is
communicated to the device using a layer of indirection.

With the dma data buffers set up properly, writing to the devices
is straightforward. The data to be copied to the device resides
in user space and is pointer to by the buffer argument. This
function sits in a loop and copies chunks of this buffer to the dma

20

data buffers. In case the buffers are full, it waits for the device to
drain the buffers, until such time as the entire user space buffer
has been written.

The check to ensure that the requisite space is available in the
dma buffers reads registers from the device to update the hwptr

field of i810 state.dmabuf. This field represents the last read
point of the device.

3. Read

ssize t i810 read(file state t file,
char *valueof(‘i) @nozeroterm buffer,
tag t<‘i> bufsize, loff t *ppos)

The read function mirrors the write function almost exactly. The
only difference being that data is copied to the user space buffer.
The documentation of the driver notes that the card’s recording
functionality is not complete.

4. Poll

unsigned int i810 poll(file state t file,
struct poll table struct *wait)

The status of the file is determined solely by the amount of avail-
able read/write space. This signals whether the device is ready
for reading or writing.

5. Ioctl

int i810 ioctl(struct inode *inode, file state t file,
unsigned int cmd, int *arg)

As in the case of the 8139too driver, the arg parameter is a refer-
ence to an implicit union in user space memory. In this case the
cmd is the tag, and the union is defined as:

tagged union layout(id=ioctl arg)
tag:(parm=3, size=4);
match tag with
SNDCTL DSP GETIPTR -> struct count info*
SNDCTL DSP GETOPTR -> struct count info*
SNDCTL DSP GETISPACE -> struct audio buf info*
SNDCTL DSP GETOSPACE -> struct audio buf info*

-> int*
;

21

The operations supported by this device range from simply getting
version numbers, to tuning clock rates for the card.

6. MMap

int i810 mmap(file state t file,
struct vm area struct *vma)

Like read and write, this function sets up the dma buffers and
assigns the bus addresses to the hardware channels. Instead of
proceeding to write to (or read from) these dma buffers, i810 mmap

remaps the virtual addresses of the buffers to the area requested
in the vma parameter.

7. Release

int i810 release(struct inode *inode, file state t file)

This function is responsible for cleaning up the driver state once
the user space process gives up its handle to the file. The cleanup
entails the following components.

– Draining Data Buffers
The driver must wait for the device to finish copying any
pending data in the dma buffers. In the case where the driver
is in recording mode, no draining needs to take place. Instead,
the device is signalled to stop writing to buffers and pointers
to the buffer are reset.

– Deallocate DMA Buffers
The DMA data buffers allocated during read/write/mmap
must be released. Even though the buffers do not last for the
entire lifetime of the driver, these buffers were consistently al-
located. (It might be possible to stream allocate these buffers
too.) Freeing the buffers involves releasing the pages that
were marked as reserved, calling pci free consistent and
clearing the bus addresses within hardware channels so that
the device no longer can access the freed pages.

– Deallocate Software State
The struct i810 state that was setup to handle this partic-
ular file must be released. Recall that references to this state
object are proliferated among various objects.

– Releasing Hardware Channel

22

The hardware channel associated with this state is returned
to the pool of available channels for this card.

• Interrupt Handling

static void i810 channel interrupt(struct i810 card *card)

Interrupts are raised by the card to signal completion of copying from
DMA buffers, or to signal updating the last valid index (LVI) in the
dma buffer ring. In both cases the current position of the hardware
pointer (which keeps track of the next position to read/write to in the
dma buffer) is updated. In the case of the LVI interrupt, if the buffers
are full then the recording/playback is also stopped.

• Post Initialization – AC97 Codec

The i810 card conforms to the AC97 codec standard. Initialization of
the AC97 interface involves registering a codec data structure with the
mixer component of the sound subsystem. The mixer interface expects
the driver to set callback function pointers in the codec structure that
allow the mixer to access the ac97 registers with the card. The initial-
ization of the card does precisely this and sets pointers to the functions
ac97 set io and ac97 get io in the codec structure.

The AC97 interface is also modeled as a file system and as such re-
quires the a file operations to be supplied. The only functions that
are relevant here are open and ioctl. Notably, the release function is
missing. The i810 open mixdev finds a card from the global list of
card and initializes a file structure with the codec structure associated
with the card. The i810 ioctl mixdev function simply extracts the
codec associated with the file and invokes the kernel ac97 interface’s
ioctl function passing the codec as an argument.

• Shutdown

The i810 remove function is registered with the pci subsystem. The
function assumes that there are no open files associated with this de-
vice. That is to say, i810 remove does not attempt to clean up any
instances of i810 state. The cleanup is limited to the following:

23

– Releasing IO Memory

Two kinds of IO Memory are held by the device. The first is
ioremapped bus address for device resident memory. These are re-
leased using release region and iounmap. The driver also holds
consistently allocated pages for the hardware channels. The orig-
inal driver does not release these channels – a likely memory leak.

– Unregistering Devices and Freeing Devices

Both the AC97 codec and the soundcore unregistration functions
are called. The i810 card should be removed from the device list
global, although it isn’t – a dangling pointer. The card is freed
using kfree as are each of the codec structures associated with
the card.

1.3.2 Cyclone safety mechanisms

1. Fat pointers for IO Memory

Most of the IO operations of this driver consist of accesses to DMA’d
memory. There are however operations that write to device registers
that need to be made safe. Just as with the ethernet driver, the macros
inb/outb were replaced by bounds-checked Cyclone versions.

2. Dependent Types for Critical Path IO

Bounds checks on fat pointers are expensive. We discovered that using
fat pointers on some paths, caused a distinct decrease in sound quality.
In order to eliminate some bounds checks dependent types were used.
The advantage of using dependent types is that a single bounds check
allows the analysis to prove repeated accesses to a particular array
element as being within bounds. This amortization of bounds checking
helped improve sound quality.

The particular form of IO memory array is such that the bounds
are known for a particular card. Since this array is allocated using
pci resource start and pci resource end, we know that the value
returned will be the nearest page size multiple of the memory on the
card. It should be possible to use an array with a static bound to
eliminate many more of the runtime bounds checks.2

2We haven’t explored this with the new vcgen bounds check elimination either.

24

3. Type Overrides

We used the extern “C include” feature here with the --cifc-inst-tvar
flag on to suppress excessivce type variable introduction. Once again,
Cyclone types were assigned to C declarations using the cyclone override
feature.

4. Reference Counted Allocation

Reference counted objects are one natural way to represent many of
the data structures used in this driver. For instance, an i810 card

object has several aliases. It is an element of the devs global card list;
it is a member of the state object; it is referred to by the pci dev

structure; the ac97 codec structure holds a reference too. The lifetime
of the object corresponds to the lifetime of the driver (it is allocated
during probing, and freed when the device is removed). There are other
cases in this driver of objects that have shorter lifetimes. Notably,
i810 state objects have a lifetime that corresponds to that of a single
file being played (or recorded) – a lifetime that obviously exceed a
lexical scope. Furthermore, the aliases of a state object are several too
: from the card object, from the file object. These considerations imply
that reference counting is a natural idiom for managing the allocation
of these objects.

One port of the driver uses reference counting extensively – all instances
of struct i810 card and i810 state were made reference counted.
The relevant kernel data types (such as the pci device) were made region
polymorphic too, and were instantiated using ‘RC, reference counted
region.

While it was possible to encode this driver using reference counted
types, maintaining all the aliases in a coherent manner proved to be
cumbersome. Ensuring the aliasing discipline requires the use of the
swap operator. Swapping in a null reference into a critical field of an
object (such as struct i810 card.state) is prone to failure since it
temporarily destroys the alias graph on which the driver is critically
dependent. Consider the following code fragment which manufactures
a local alias of the state object maintained within the card object.

25

struct i810 state *‘RC temp state = NULL;
struct i810 state *‘RC local state = NULL;
struct i810 card *‘RC temp card = NULL;
temp card :=: devs;
temp state :=: temp card->state;
local state = alias refptr(temp state);
temp state :=: temp card->state;
temp card :=: devs;

All the data structures are restored to their original state at the end
of this code fragment (with an additional alias to the state object).
Code of this sort is used extensively throughout the driver. The nature
of this device is such that it is frequently interrupted. While a file
is being played, the device is reads data out of the dma buffers in
parallel with the driver thread that writes the data into these buffers.
The LVI type interrupts are raised by the device to cause the driver to
update its record of current read position of the device. Since the above
code must run in contexts that have interrupts enabled, and since no
provision of reasonable cost (such as disabling interrupts etc.) can be
made to ensure its atomicity. For this reason, we were unable to use
reference counting succesfully. Interrupt handling code would often run
with the pointer graph in an invalid state, resulting in unexpected null
pointer exceptions.3

5. Dynamic Regions

Using dynamic regions allowed for freely aliased objects within a par-
ticular region, while still permitting the explicit deallocation of these
objects. Our solution was to use a combination of existential and uni-
versal quantification, and dynamic regions to represent a state object.
Cyclone disallows placing alias-restricted pointers (‘U and ‘RC, i.e.,
those in a region of kind TR) directly within an existential type. The

3The swap operator while intended to be atomic does not currently have an atomic
implementation. It is also worth noting that only aliases to the struct i810 state objects
were found to be critical. That is, it was possible to use reference counting for the struct
i810 card object and not have interrupt handlers fail. Finally, the ac97 codec object
was never implemented using reference counting. It is unlikely that the aliases of this
object are on a critical path, and it should be possible to use reference counting here. The
point remains, however, that the non-atomic manufacture of aliases although type-safe is
impractical in the presence of frequence context switching.

26

only way to examine the contents of an existentially quantified object
is by unpacking it using pattern matching. Pattern matching would
result in the illegal creation of a alias-restricted pointer. Consider the
following example

struct wrapper {
<‘dummy::I>
int *‘RC a;

};
int use wrapper ok(struct wrapper *‘U w)
attribute ((consume(1))){
let &wrapper{a} = w;
return *a;

}
int use wrapper fail(struct wrapper *‘r::TR w) {

let &wrapper{a} = w;
return *a;

}

Note that if pattern matching to extract the reference counted pointer
from an alias-free object, then we can simply consume the wrapper to
guarantee that no aliases have escaped. If, however, there are aliases to
the wrapper, (either reference counted, or simple heap directed point-
ers), then consuming the pointer does not suffice. In the example below,
consuming the pointer A after extracting the pointer ‘RC:X, allows that
pointer to be extracted once more using the pointer B. Clearly this is
unsafe since the object O could have been freed using the reference
‘RC:X thus creating a dangling pointer when unpacking B.

_ _ _

A --‘RC-->|_|_|--‘RC:X->|_| O

^

|

B --‘RC---

One way to overcome this restriction is the use of the following scheme:

27

struct state reg <‘r::R> {
rcregion key opt t<‘r> regkey;
struct i810 state *‘r state;

};
struct state wrapper{<‘r>

struct state reg<‘r> *‘H s;
};
void handle state(struct state wrapper *‘RC sw) {

let &state wrapper{<‘r> s} = sw;
rcregion key opt t<‘r> tmp = NULL;
s->regkey :=: tmp;
rcregion key opt t<‘r> rgn= alias refptr(tmp);
s->regkey :=: tmp;
{

region h = open(rgn);
state->field ...
...

}
drop refptr(rgn);

}

Note here that the existentially quantified struct state wrapper con-
tains only a heap pointer which can be used without a problem in pat-
tern matching. Extracting the reference counted region key regkey

from struct state reg can be done as usual using the swap operator
since it does not have to be unpacked using pattern matching.

We used this scheme to represent the software state of the driver. The
advantage of this scheme over reference counting is that within the exis-
tentially quantified dynamic region objects of type struct i810 state

can be freely aliased. The function handle state above shows how the
number of swaps required to manipulate the state is greatly reduced
– within the scope of the region declaration no swaps are needed. We
found this approach to be much more reliable than standard reference
counting.

The glaring disadvantage with this method is that it leaks memory. We
require the contents of the existentially quantified object to contain a
heap directed pointer, so that the aliasing discipline is observed. Such
pointers cannot however be freed. Thus, with each allocation of a state

28

object, we leak two double-words of memory corresponding to the size
of struct state reg.

1.3.3 Open Issues / Cyclone enhancements required

An Alternative Construct for Unpacking Existential Types
A prominent failing of the Cyclone port of this driver is the memory leak

due to the interaction between existential types and alias-restricted pointers.
We attempted a solution to this problem using a new construct for pattern
matching. This construct would appear as follows:

struct ex type {
<‘i::I>
tag t<‘i> a;
int *{valueof(‘i)} ‘RC b;

};
void bind address(struct ex type ex) {

let ex adr<‘i> = ex;
let btmp = NULL;
btmp :=: ex adr->b;
...

}

Here the let<‘i> construct binds the existential type variable of the
struct ex type and binds thee address of ex to the variable ex adr which
has type struct ex type *‘bind address. By explicitly specifying the
scope of the type variable, this scheme avoids the well-known difficulty of in-
ferring the scope. Also, by binding the address it provides a more convenient
syntax for unpacking an existential, and would have allowed for swapping
out pointers to obey the aliasing discipline.

Unfortunately, we learnt that this method of unpacking is unsound. Dan
Grossman’s ESOP paper (ref?) describes similar unsoundnesses due to the
interaction between unpacking existential types and the address-of operator.
An illustration of the unsoundness is provided below.

29

struct Closure {
<‘a>
void (@f)(int, ‘a);
‘a env;

};
void use closure(struct Closure @‘H c, struct Closure @‘H c2) {

let p<‘a> = c; //bind struct Closure @p=c, ‘a as witness type of p
let f = p->f; //f has type void(@)(int, ‘a)
*c = *c2; //changes the witness type ‘a
f(0, p->env); //oops -- unsound

}

One option was to permit this kind of unpacking only in the case where
the pointed to object is declared as const. However, since C allows the
introduction of the const qualifier simply by using a cast, guaranteeing the
const-ness of the underlying data structure is not feasible. Furthermore, our
solution for using TR kinded pointers within these existential types requires
the swapping out of these pointers, which clearly violates const-ness.

1.4 PWC driver for Philips webcam

The pwc driver is intended to support multiple usb cameras using the video4linux
interface. Although primarily intended for Philips models, it also supports
models by Logitech, Samsung etc. Our experiments were conducted using a
Logitech QuickCam Pro 4000 usb camera.

It is worth noting that this driver is not supported in linux kernel dis-
tributions after 2.4.28 (?). The reason for this appears to be th reliance on
a binary only release of an image codec since it is Philips proprietary code.
Using this binary only code required a special hook to be installed within
the kernel. The provision for this hook was removed in later distros of the
kernel. As a result, the entire pwc driver has been discontinued. Presumably
alternative open source drivers will become available soon. The version of
pwc used here does not utilize this codec at all and as a result is purely at
the sourc level, i.e. no binary only code.

1.4.1 Overview of driver behavior

• Module initialization This driver is intended for devices on the Uni-
versal Serial Bus (USB) rather than on the PCI bus. It follows that

30

the setup for this driver differs substantially from the previous drivers
described here. The interface provided by the kernel usb service does,
however, bear resemblance to the pci interface.

static int usb pwc init(void)

This function is declared as the module initialization routine. It relies
on the static initialization of video device and usb driver structures.
Similar to pci device structures, these static objects maintain reference
callback functions within the driver that the kernel invokes to perform
various operations on the device.

Module initialization parameters, if any, are parsed and the appropriate
driver globals are set. The module parameters allow for the setting of
the image and frame sizes, the number of buffers used for collecting
images, the number of frames per second, image compression, power
saving, led control, a debugging flag, and finally a hint parameter that
might help the driver recognize the device.

Once all globals have been set properly, the usb register function is
called, passing the usb driver structure as an argument. This results
in usb pwc probe function being called, which performs the real work
of initialization. Specifically, when this function is called, the existing
list of interfaces is rescanned so that this driver can attach to any
recognized device already present. The driver’s probe functions is also
called when a device is plugged into the usb port.

static void *usb_pwc_probe(struct usb_device *udev,

unsigned int inum,

const struct usb_device_id *id)

The attached device is recognized using a tuple of vendor-id and product-
id that is maintained within the udev structure. A pwc device struc-
ture, the principal object in this driver, is allocated. This structure
maintains the various structures associated with image collection, to-
gether with values that relate to the video device and usb device in-
terfaces. The basic values related to frame size etc. are set in this
structure.

The next step involves the allocation of a video device structure. As
mentioned previously, the driver must make use of the video4linux facil-
ity (/dev/video), which is provided by the video driver module. It is the

31

responsibility of this driver to allocate and initialize a video driver ob-
ject which, similar to the usb driver object, defines various references
to driver callback functions. Some of these fields can be set statically,
while others rely on the identity of the actual device probed. In addi-
tion, the video driver object allows the driver to stash a reference to
its private data within it, which in this case is the pwc device object,
which also maintains a reference to the video driver object. This
double linkage impacts our choice of a memory management solution
for this driver.

Once the video driver object is set up, the video register device

function is called. The role of this function is primarily to assign a
node number to this device (typcically /dev/video0), and binds the
supplied video device to an array of video device objects currently
registered on the system.

Failure Handling????

• Post Initialization – Main Functional Path

An application that attempts to access the video device must first call
the pwc video open, among the functions that had been registered with
the video4linux system previously. The set of such functions mirrors
the file operations as registered by the audio driver.

1. Open

int pwc_video_open(struct video_device *vdev, int mode);

The main function of this operation is to set up the buffers used
by the driver to gather images from the camera. After the camera
is powered-up, these buffers are allocated. There are three levels
of buffers:

(a) Isochronous Buffers
These buffers are used to gather data that is received in small
packets (urb’s) from the usb controller. The number of these
buffers is fixed statically to 2. Each isoc buffer has a fixed
size and is simply allocated using kmalloc GFP KERNEL.
Isoc buffers are closely coupled with the urbs used by the
usb interface. Urb’s must be allocated using usb alloc urb

32

passing in the number of packets that each urb contains. This
allocator allocates the urb structure followed by enough space
for packet descriptors for the number of packets requested
per urb frame. It remains the responsibility of the usere to
allocate the data buffer in which these packets will be stored.
To this end, the iso buffers allocated using kmalloc are stored
in the urb. Once the urb structure has been initialized, it is
registered with the usb system usinig usb submit urb. When
all the packets in an urb have been filled and interrupt is raised
and the driver copies the packets in the urb into the current
frame buffer.
It is to be noted that the size of the frame buffer and the size
of an urb frame are vastly different. That is, several urbs are
required to fill a single frame. Frame boundaries are marked
by a packet of distinguished size.

(b) Frame Buffers
Data gathered form the ISOC buffers are assembled into frame
buffers. The maximum number of frames is fixed statically to
5. The frames are organized in a circular list which keeps
track of empty frames and frames that are filled and awaiting
hand-off to the user process. The size of each frame buffer is
large and may span multiple pages. These pages are allocated
using vmalloc.

(c) Image Buffers
Image buffers are mmap’d buffers that are used to copy data
from the frame buffers into memory that is accessible by the
user space process. In case there is image compression being
used then the image buffer contains the decompressed data.
The image buffer data is embedded within a viewport too.
Image buffers are allocated using vmalloc which is suitable for
grabbing multiple pages of memory that is not required to be
physically contiguous. In addition to vmalloc’ing the pages,
the image buffers are also mmap’d to an address requested by
the user space process so that they can be easily handed off.

2. Interrupt

static void pwc_isoc_handler(urb_t urb)

33

When setting up the urb structure during video open, this func-
tion is registered within the urb as the interrupt handler for pro-
cessing completed urbs. This function accesses the current par-
tially filled frame and proceeds to copy data from the urb’s transfer
buffer into this fill-frame.

If the size of an urb packet is below some recognized threshold for
this device then this is intended to signal the end of the frame.
In this case, after copying over the packet to the fill-frame, the
isoc handler wakes up any read process that might be waiting on
a shared queue for a frame to become full.

3. Read

long pwc_video_read(struct video_device *vdev, char *buf,

unsigned long count, int noblock);

This function is invoked by the user process when a image frame
is required. In most cases, however, this process must block until
such time as a frame becomes available. That is, partial reads
from a frame are typically disallowed. For this purpose, in the
initialization code, a wait queue is declared for processes to wait
for completed frames. Upon entry into this function, if it is the
case that there is no completed frame waiting to be read, then
this thread will wait on this queue until it is woken up by the
pwc isoc handler urb completion interrupt handler. Note that
this function does not sit in a loop waiting each time for a frame
to become available. It only handles a single frame, and once that
has been copied to the user the function exits.

Without decompression handling frames is relatively straightfor-
ward. The current frame pointers are advanced so that the isochronous
process can begin to fill in new urb packets into frame buffers. The
data from the filled frame buffer is copied over to the current im-
age buffer. This copying requires a step of conversion from the
camera’s native format to a yuv format, and also includes the cre-
ation of a viewport (border frame) in the image buffer. Finally,
once the data is copied from the image buffer to the user space
buffer pointed to by the buf argument.

4. MMap

34

int pwc_video_mmap(struct video_device *vdev,

const char *adr, unsigned long size);

The driver provides this facility to map all the image buffers to the
requested memory address starting at adr. However the symbols
that refer to the current read positions and valid frame buffers
etc. are not exported by this driver. Thus, the calling process
must manage reading data out of the image buffers by itself. This
provides a mechanism for partial reads from these image buffers.

5. Poll

unsigned int pwc_video_poll(struct video_device *vdev,

struct file *file,

poll_table *wait);

This function returns a status that indicates whether or not there
are frames available for reading.

6. Ioctl

int pwc_video_ioctl(struct video_device *vdev,

unsigned int cmd, void *arg);

7. Close

void pwc_video_close(struct video_device *vdev);

This function releases all buffers associated with the video device.
Freeing the buffers is done in the opposite order of allocation.
That is, first image buffers are released, then frame buffers, then
isoc buffers and urbs. Note that urb’s must be freed using the
usb free urb interface.

This function does not free any other structures associated with
the drivers such as the video driver and usb driver. That re-
sponsibility falls upon the usb interface’s callback functions.

• Shutdown

1. Usb Disconnect

static void usb_pwc_disconnect(struct usb_device *udev, void *ptr)

35

This function is not part of the v4l interface. It is registered with
the usb subsystem along with the probe function during driver
initialization. As the name suggests, this function is called when
the camera is unplugged from the usb port. It is at this point that
cleanup operations are performed.

Allocation and freeing of the video device structure is the re-
sponsibility of this driver. As noted in the description of usb pwc probe

the driver allocated the video device and then registers it with the
v4l subsystem. Thus, the cleanup operations performed here must
free this object to prevent a memory leak.

However, nothing prevents the user from disconnecting the cable
while some v4l application is still in use. In this situation, the
video device structure is still in use in the v4l drivers and free-
ing this object will result in a dangling pointer in the v4l drivers.
To avoid this situation, the driver makes the following choice: A
count of the number of open video devices is maintained in the
pwc device object. Each call to pwc video open results in this
count being incremented; calls to pwc video close decrement the
count. If the cable is disconnected while this count is greater than
zero the driver delays freeing the object. Instead, a reference to
this soon-to-be obsolete object is stashed in a driver global vari-
able. All other state associated with this device is discarded. The
driver anticipates that a subsequent call to pwc video read by
the v4l application will fail with an error code that is an indi-
cation for the application to exit. Once the v4l application has
exited it is now safe to discard the stashed video device object
and reclaim the memory leak. Thus, an additional responsibility
of usb pwc probe, usb pwc disconnect, usb pwc exit is to free
any pending object that is stashed in this global variable.

In the normal situation (the video open count is zero), the driver
goes ahead and frees the video device object immediately. In both
cases the driver unregisters the device with the v4l subsystem.

Finally, this cleanup routine also deallocates the main pwc device

object.

2. Module exit

static void usb_pwc_exit(void)

36

The counterpart of usb pwc init, this function is called when the
module is finally unloaded. It handles any video device mem-
ory leak that may have been generated by a premature usb cable
disconnect. It also deregisters the driver from the usb subsystem.

1.4.2 Cyclone Safety Mechanisms

1. Dynamic Regions for pwc device object

As in the case of th i810 state object in the previous driver, the
pwc device object was represented using an existentially quanitified
heap directed pointer to a region key and the actual pwc object itself.
As previously, this representation has the advantage of permitting free
aliasing of the pwc object within the region, while still allowing the
object to be freed manually. There remains the problem of the quad-
word memory leak.

2. Image buffers

The three layers of image buffers are used by this driver to encode the
state of a single user application. With each session of video open,
video close these buffers are allocated and freed.

The ISOC buffers were allocated in the reference counted region. These
buffers are only referred to through the urb and through the isoc buffers
themselves. They do not participate in any more complicated structure
that makes reference counting unwieldy.

The frame buffers are maintained in two circular lists, one for the empty
frames and one for the filled frames. In addition, the current position
in each list is maintained as well. This aliasing pattern makes using
reference counting troublesome. As a result, much as was the case with
the pwc device object, frame buffers were allocated in dynamic regions.
Once again, this encoding results in a small memory leak.

The image buffers are also maintained in a circular list. These were
also allocated in dynamic regions. Both frame and image buffers are
allocated using the rvmalloc construct, as described in the section on
the cyclone runtime module.

3. Exception Checking

37

As mentioned previously, exceptions that are thrown from Cyclone code
must not cause the stack to be unwinded into C code. One construct
described earlier was the use of the cyc call macros that ensure that
a top level handler is installed when a C function calls into a Cyclone
function. While effective, this mechanism is unwieldy in that often a
surrogate function is required for each cyclone function that may be
called from C. That is, for a Cyclone function foo we require a C func-
tion C foo whose body consists only of a cyc call to foo. The function
foo is hidden from the C namespace and only C foo is exposed. Clearly,
this duplication is cumbersome. More importantly, this approach does
not lend itself easily to checking that no exceptions escape Cyclone.

Cyclone function types can be annotated with an attribute no throw4.
Such functions must have bodies that consist mainly of a try/catch
block in which a top level handler is installed. Some code that is guar-
anteed to not throw exception (such as simple variable declarations)
are permitted outside this try-block.

We annotate the type of the various function pointers that are installed
in kernel datastructures (such as the video driver callback functions)
with this no throw attribute. Thus we use the type checking system
to ensure that no exceptions leak into C code.

struct video_device<‘a::A>

{

...

int (*open)(struct video_device<‘a> *, int mode)__attribute__((no_throw));

void (*close)(struct video_device<‘a> *)__attribute__((no_throw));

long (*read)(struct video_device<‘a> *, char *, unsigned long, int noblock)__attribute__((no_throw));

...

‘a *priv;

...

}

4. Handling urb packet descriptors

Allocation of urbs must be done using the usb alloc urb interface.
As described previiously, this function takes an integer argument that

4Although not described in each case, this mechanism was used for all but the ethernet
driver described here

38

specifies the number of packets that are contained within a single urb.
This function contiguously allocates enough space for the urb itself
followed by space for descriptor fields for each of the packets. The
definition of an urb then is as follows:

struct urb {

...

int npackets;

...

struct iso_packet_descriptor desc[0]; //Note the zero array dim.

}

The definition of an urb is closely coupled with the implementation
of the usb modules. It is not possible to override the declaration of
this structure such that it is explicitly an dependent type with the
npackets field specifying the number of elements in the desc array.
Such an override is not representation consistent since it uses a non-
zero array dimension which changes the size of the urb object.

To overcome this we used an escape into C that explicitly constructs a
dependent type using the address of the desc field. This utility function
is packaged with the other usb type overrides. A Cyclone driver is
expected to use this interface to access the packet descriptors.

struct iso_packet_desc_array {

<‘i::I>

tag_t<‘i> len;

struct iso_packet_descriptor *{valueof(‘i)} base;

};

typedef struct iso_packet_desc_array iso_arr_t;

extern "C include" {

iso_arr_t build_iso_arr(struct urb *u) {

iso_arr_t ret = {u->npackets, &u->desc};

return ret;

}

}

39

1.4.3 Open Issues / Cyclone enhancements required

1. Urb allocation/de-allocation – Type based restrict construct

Urb’s are explicitly allocated and deallocated using an interface that
is outside the control of the cyclone driver. One approach to ensuring
the safety of this kind of memory management is to use the separate
capability technique as described in section ??.

An alternative approach is to use a combination of reference-counted
(or dynamic regions) and unique pointers to support this idiom. This
method requires a couple of steps. First, the allocation function (usb alloc urb)
is hidden from the Cyclone program (using the cyc hide construct of
extern “C include”). Next a wrapper to this function is provided, and
the type of the deallocator is overridden as follows.

struct urb_wrapper {

struct urb *‘U urb;

};

struct urb_wrapper *‘RC cyc_usb_alloc_urb(int npackets);

void usb_free_urb(struct urb *‘r u) __attribute__((consume(1)));

The cyclone application that wishes to manipulate several aliases of
the urb object can do so using the wrapper. The requirement of swap-
ping out the inner urb object before accessing (due to the unique path
requirement on unique pointers) ensures that the aliasing discipline is
maintained. By consuming its argument, the type of the deallocator
effectively encodes the fact that it frees its argument.

A downside to this approach is also the need to swap out the unique
pointer each time. As was the case with struct i810 state in the
sound driver, this kind of destructive manipulation of a shared data
structure can be hard to use. One approach that was considered to rem-
edy this situation, was to use a type-based restrict operation. In effect,
restrict-ing on a particular pointer value would prevent dereferencing
all pointers that are a subtype of the restricted pointer’s type within
the scope of the restrict operation. Of course, the restrict-ed pointer
itself would be allowed to be dereferenced. This operation would allow

40

for the elimination of the swap construct, preserving the integrity of
the data structure. In the multi-threaded case however, some more
complex construct would be required.

2. Video device allocation/deallocation

The video device object is allocated and deallocated by this driver,
although a large proportion of the functionality related to this object
is managed seperately in the v4l drivers. As described previously, the
newly allocated object is handed off to the v4l subsystem using a reg-
istration protocol. Thus, care must be taken when deallocating the
object, since references to it might still be present from the v4l mod-
ules.

One approach to managing this might be to allocate the video device

object using a reference-counted region. An additional attribute might
be used on a function type to specify that the function manufactures
an alias to this pointer. That is, we might have the following types:

void video_register_device(struct video_device *‘RC dev)

__attribute__((inc_refcnt(1)));

void video_unregister_device(struct video_device *‘RC dev)

__attribute__((dec_refcnt(1)));

These types would be used by the code generator to insert the ap-
propriate reference-count changes when the function is called. In this
manner, all the references within the v4l subsystem are treated as a
single reference. This reference counting mechanism could also be used
to replace the application level reference counting used by the driver
to manage memory leaks in the case of usb cable disconnects.

Reference counting, as experienced previously, is difficult to use, espe-
cially in the case of an object that is widely aliased even within this
driver. In such cases the preferred option is to use dynamic regions. A
similar mechanism might be used to handle this situation, by using the
following wrappers.

void cyc_video_register_device(struct video_device *‘r dev,

region_key_t<‘r> *‘RC key)

41

__attribute__((inc_refcnt(2)));

void cyc_video_unregister_device(struct video_device *‘r dev,

region_key_t<‘r> *‘RC key)

__attribute__((dec_refcnt(2)));

42

